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1 Finding Similar Items
Finding similar items is a fundamental data mining task. We may want to find whether two
documents are similar to detect plagiarism, mirror websites, multiple versions of the same article
etc. Finding similar items is useful for building recommender systems as well where we want to
find users with similar buying patterns. In Netflix two movies can be deemed similar if they are
rated highly by the same customers.

While, there are many measures of similarity, in this lecture, we will concentrate one such
popular measure known as Jaccard Similarity.

Definition (Jaccard Similairty). Given two sets S1 and S2, Jaccard similarity of S1 and S2 is
defined as |S1∩S2

S1∪S2

Example 1. Let S1 = {1, 2, 3, 4, 7} and S2 = {1, 4, 9, 7, 5} then |S1 ∪ S2| = 7 and |S1 ∩ S2| = 3.
Thus the Jaccard similarity of S1 and S2 is 3

7 .

1.1 Document Similarity

To compare two documents to know how similar they are, here is a simple approach:

• Compute k shingles for a suitable value of k k shingles are all substrings of length k that
appear in the document. For example, if a document is abcdabd and k = 2, then the
2-shingles are ab, bc, cd, da, ab, bd.

• Compare the set of k shingled based on Jaccard similarity. One will often map the set of
shingled to a set of integers via hashing. What should be the right size of the hash table?
Select a hash table size to avoid collision. For example, if k = 9 then considering the 26
letters and white space the possible number of k-shingles is 279. Consider a hash function
that maps shingles to a range of 1, 2, ..., 279.

1.2 Min-wise Hashing

There are multiple challenges when dealing with large documents, especially when the number
of such documents is itself quite large. In that case, the number of shingles from a document
could be really large, and storing them for all the documents in the main memory for similarity
comparison is infeasible.

We rather want to compute a small fingerprint and store that instead for every document,
such that if we compare the fingerprints, then with high probability we will be able to compute
the Jaccard similarity of the original set of shingles.

We now describe such an approach, popularly known as min-hash computation.
We compute a single min-hash of a set of shingles S as follows. Generate a random

permutation σ1 of all possible shingles (e.g. for k = 9, it is a permutation of 1 to 279) and report
the element in S that appears first in σ1. Do you need to generate the entire permutation before
computing the min-hash?
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The fingerprint of S consists of tminhashes computed from t randomly generated permutations
σ1, σ2, ...., σt. To compute an estimate of the Jaccard similarity of S1 and S2, we simply compute
the number of min-hashes that match–if that number is r, the estimated Jaccard similarity is r

t .
The question is then how large t should be?

1.2.1 Computing the size of min-hash

Suppose we have two sets S1 and S2 and would like to make an estimate of the Jaccard similarity
of S1 and S2 based on the computed fingerprint. Define an indicator random variables Xi which
is 1 if the ith min-hash match. Then

X =
t∑
i=1

Xi = r

Now the ith min-hash will be same for S1 and S2, if the elements from S1 ∩ S2 come first in
the permutation before the elements in S1 ∪ S2 \ S1 ∩ S2. Since all S1 ∪ S2 elements are equally
likely to come first in the permutation, the chance that the two min-hashes are the same is
exactly |S1∩S2|

|S1∪S2| , which is same as the Jaccard similarity of S1 and S2.
Therefore,

Pr[Xi = 1] = Jaccard-Similarity(S1, S2)

Then

E[X] =
t∑
i=1

E[Xi] =
t∑
i=1

Pr[Xi = 1] = tJaccard-Similarity(S1, S2)

By the Chernoff bound,

Pr[X 6∈ E[X](1± ε)] ≤ 2e
−tJaccard-Similarity(S1,S2)ε2

3

If we want that bad probability to be less than γ, we get

2
e tJaccard-Similarity(S1,S2)ε2

3

≤ γ

or,
t ≥ 3

Jaccard-Similarity(S1, S2)ε2 ln 2
γ

Therefore, we see if we would like to measure Jaccard similarity of sets that is very low, we
may need higher values of t. Suppose, we want to measure Jaccard Similarity to an accuracy of
±ε only when the Jaccard similarity is at least 1

10 . Then we must use t satisfying

t ≥ 30
ε2

ln 2
γ

1.3 Applications of Min-hash

Source: Wikipedia A large scale evaluation has been conducted by Google in 2006 to compare the
performance of Minhash and Simhash algorithms. In 2007 Google reported using Simhash for
duplicate detection for web crawling and using Minhash and LSH for Google News personalization.
Check out the Description from blogs:

http://matthewcasperson.blogspot.com/2013/11/ minhash-for-dummies.html
http://robertheaton.com/2014/05/02/ jaccard-similarity-and-minhash-for-winners/: match-

ing twitter users
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http://blog.jakemdrew.com/2014/05/08/ practical-applications-of-locality-sensitive-hashing-
for-unstructured-data/

There are implementations available in github. https://github.com/rahularora/MinHash
which may have bugs.

2 Locality Sensitive Hashing
Having fingerprints allow us to compute similarity between any pair of documents fast. However,
computing pair-wise similarity for all document pairs to find all documents above say 1

10 Jaccard
similarity will be highly time consuming.

A data structure that helps us here to reduce the running time significantly is locality sensitive
hashing. At a high-level locality sensitive hashing is a hashing mechanism such that items with
higher similarity have higher probability of colliding into the same bucket than others. We will
use multiple such hash functions and only compare the documents that are hashed to the same
bucket. We would need to worry about (i) false positive: when two “non-similar” items hash to
the same bucket–this increases search time and (ii) false negative: when two similar items do
not hash to the same bucket under any of the chosen hash functions from the family. We will
now see details about locality sensitive hashing (LSH) in this section.

2.1 Applications

LSH has found wide-spread applications in

• Near-duplicate detection

• Hierarchical clustering

• Genome-wide association study

• Image similarity identification

• VisualRank

• Gene expression similarity identification

• Audio similarity identification

• Nearest neighbor search

• Audio fingerprint

• Digital video fingerprinting

• Anti-spam detection

• Security and digital forensic applications

Check out: http://www.mit.edu/ andoni/LSH/
and
https://github.com/triplecheck/TLSH
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2.2 Approximate Near Neighbor Search

The problem that we will tackle with LSH is approximate near neighbor search. We start with
by defining near neighbor problem.

Definition (Near Neighbor Problem). Given a set of points V , a distance metric d and a query
point q, is there any point x close to query point q such that d(x, q) ≤ R

The problem is easy to solve efficiently in low dimension, e.g. via voronoi diagram construction
without requiring to go over the entire data set. However, the complexity increases exponentially
in dimension.

We therefore, relax the problem and ask for approximate near neighbor problem.

Definition (Approximate Near Neighbor Problem). Given a set of points V , a distance metric
d and a query point q, the (c,R)-approximate near neighbor problemm requires if there exists
a point x such that d(x, q) ≤ R, then one must find a point x′ such that d(x′, q) ≤ cR with
probability > (1− δ) for a given δ > 0.

We will use LSH to solve this problem.

Definition (Locality Sensitive Hashing). A family of hash functions H is said to be (c,R, p1, p2)-
sensitive LSH for a distance metric d if it satisfies the following conditions.

1. Prh∼H[h(x) = h(y)] ≥ p1 for all x and y such that d(x, y) ≤ R.

2. Prh∼H[h(x) = h(y)] ≤ p2 for all x and y such that d(x, y) > cR.

3. p1 > p2

Example 2 (Hamming Distance). Let V ⊆ [0, 1]n and d(x, y) =
Hamming distance between x and y. Let R and cR both be much less than n. Define
H = {h1, h2, ..., hn} such that hi(x) = xi

For the above p1 ≥ 1− R
n since when the distance is at most R, the number of bits where

the two vectors differ is at most n−R. On the other hand, p2 ≤ 1− cR
n since when the distance

is > cR, the number of bits where the two vectors differ is at least n− cR.

Example 3 (Jaccard Distance). Define Jaccard Distance between two sets x and y ⊆ [1, n] as
1− Jaccard(x, y). Define H = {h1, h2, ..., hn!} such that hi(x) corresponds to min-hash of x for
the ith permutation of [1, n] in the lexicographic order.

We have p1 ≥ 1−R and p2 ≤ 1− cR. Why?

Figure 1: Pictorial representation of LSH for Cosine distance

Example 4 (Cosine Distance). The cosine of two non zero vectors a and b can be derived by
noting 〈a.b〉 = ||a||||b||cosθ where a.b denote the inner dot product of the two vectors a and b.
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Cosine similarity of a and b is defined as 〈a.b〉
||a||||b|| .

Think of a point as a vector from the origin (0, 0, ..., 0) to its location. Two points’ vectors
make an angle, whose cosine is the normalized dot product of the vectors: 〈a.b〉||a||||b|| . The cosine
distance is simply θ = arccos( 〈a.b〉||a||||b||). θ can range from 0 to 180 degrees.

To construct LSH for the cosine distance simply do the following: pick a random hyperplane
v, which determines a hash function hv with two buckets. Define hv(x) = +1 if 〈v.x〉 ≥ 0 and
hv(x) = −1 if 〈v.x〉 < 0.

Suppose θ = arccos( 〈a.b〉||a||||b||). Look into the plane defined by a and b and let u denote the
normal vector perpendicular to the random hyperplane v. The hashed value of a and b will
be different if a and b lie on two sides of u–this happens with probability θ

180 . Hence, we have
p1 = 1− R

180 and p2 = 1− cR
180 where 0 ≤ cR ≤ 180. A pictorial representation is given below.

For the above, it is sufficient to construct v such that each component is ±1 with equal
probability.

Figure 2: Pictorial representation of LSH for Euclidean distance

Example 5 (Euclidean Distance). Here hash functions correspond to random lines. Partition
the line into buckets of width w starting from a random shift b. Hash each point to the bucket
containing its projection onto the line. Nearby points are always close; distant points are rarely
in same bucket.

Specifically, we do not need to consider all random lines–we rather select a vector v whose each
component is a gaussian random variable with 0 mean and standard deviation 1. hv(x) = bv.x+b

w c
where b is chosen uniformly at random in [0, w].

3 General Scheme of using LSH to solve (c, R)-Near Neighbor
Problem

Suppose we are given a LSH family of hash functions H which is (c,R, p1, p2)-sensitive. We will
construct L composite hash functions from it as follows. Select hi,j uniformly and randomly
from H for i = 1, 2, ..,K and j = 1, 2, .., L. Define the composite hash functions g1, g2, .., gL as
follows:

gj = 〈h1,j , h2,j , ..., hK,j〉

3.1 Preprocessing.

1. Create a hash table bucketj for gj for j = 1, 2, ..,K.

2. For all x ∈ V and for all j ∈ [L], add x to bucketj(gj(x))

Time for preprocessing is O(NKL) where N denotes the number of data points.
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3.2 Query(q)
1. for j = 1, 2, .., L

• for all x ∈ bucketj(gj(q)) do
– if d(x, q) ≤ cR then return x

2. Return none

Time for querying is O(KL+NLF ) where F denotes the probability that for any j gj(x) =
gj(q) when x 6= q. Then NF denotes the expected number of entries that are more than cR
distance away from q but are in the same bucket as q under gj . Since there are L composite
hash functions, the total number of such bad items is on expectation O(NLF ). We would like
to choose the parameters K and L in a way such that NLF ≈ KL. In fact, we will set K as
O(logn) and NF = 1.

There are two parts to the analysis (i) computing success probability and (ii) analyzing the
time complexity.

Computing success probability Suppose there is a point x such that d(x, q) ≤ R. Then
the algorithm will be successful if it finds points y such that d(y, q) ≤ cR. Clearly, this success
probability is at least as high as the probability that the algorithm finds the actual point x.

Hence, we have

Pr[Success] ≥ Pr[∃j such that gj(x) = gj(q) | d(x, q) ≤ R]
≥ 1− (1− pK1 )L

Set L = 1
pK1

, then

Pr[Success] ≥ 1− (1− 1
L

)L ≈ 1− 1
e

Question. Suppose you want your success probability to be 1− 1
n , what should be the value

of L as a function of p1 and K?

Computing time complexity To compute the querying time, we need an upper bound on
F .

F = Pr(gj(y) = gj(q) | d(y, q) > cR) = pk2

Hence the time requirement is O(KL + NLpK2 ). To simplify calculation, we will select
NpK2 = 1 or

N = 1
pK2

=
( 1
p1

)log1/p1 (1/pK2 )
=
(

1
pK1

)log1/p1 (1/p2)

=
(

1
pK1

) log 1/p2
log 1/p1

= L
log 1/p2
log 1/p1

Or, in other words,
L = N

log 1/p1
log 1/p2

Let us use the notation ρ = log 1/p1
log 1/p2

. We have L = Nρ.
Now, NpK2 = 1 gives 1

pK2
= N or K = logN

log 1
p2
.

Example 6. If one has p1 = 0.1 and p2 = 0.01, then ρ = 1
2
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3.3 Practical Consideration

The range of values of the composite hash functions could be RK if R is the range of the LSH
hash family. Therefore, it may not be practical to maintain a hash table where there is an index
for every possible value that the composite hash functions can take. Suggest a way to overcome
this difficulty.

7


	Finding Similar Items
	Document Similarity
	Min-wise Hashing
	 Computing the size of min-hash

	Applications of Min-hash

	Locality Sensitive Hashing
	Applications
	Approximate Near Neighbor Search

	General Scheme of using LSH to solve (c,R)-Near Neighbor Problem
	Preprocessing.
	Query(q)
	Practical Consideration


