Map Reduce Algorithms

Acknowledgement: Majority of the slides are taken from
Sergei Vassilivski’s tutorial on MapReduce



A Sense of Scale

At web scales...
- Mail: Billions of messages per day

- Search: Billions of searches per day
- Social: Billions of relationships

...even the simple questions get hard
- What are the most popular search queries?
- How long is the shortest path between two friends?



To Parallelize or Not?

Distribute the computation
- Hardware is (relatively) cheap
- Plenty of parallel algorithms developed

But parallel programming is hard

- Threaded programs are difficult to test. One successful run is not
enough

- Threaded programs are difficult to read, because you need to know in
which thread each piece of code could execute

- Threaded programs are difficult to debug. Hard to repeat the
conditions to find bugs

- More machines means more breakdowns



MapReduce

MapReduce makes parallel programming easy
- Tracks the jobs and restarts if needed
- Takes care of data distribution and synchronization

But there’s no free lunch:
- Imposes a structure on the data
- Only allows for certain kinds of parallelism



MapReduce Setting

Data:
- “Which search queries co-occur?”

- “Which friends to recommend?”
- Data stored on disk or in memory

Computation:
- Many commodity machines



MapReduce Basics

Data:

- Represented as <Key, Value> pairs

Example: A Graph is a list of edges
- Key = (u,v)

(u.v) Wy

- Value = edge weight



MapReduce Basics

Data:
- Represented as <Key, Value> pairs

Operations:

- Map: <Key, Value> — List(<Key, Value>)
« Example: Split all of the edges
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MapReduce Basics

Data:

- Represented as <Key, Value> pairs

Operations:
- Map: <Key, Value> — List(<Key, Value>)
- Shuffle: Aggregate all pairs with the same key
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MapReduce Basics

Data:

- Represented as <Key, Value> pairs

Operations:
- Map: <Key, Value> — List(<Key, Value>)
- Shuffle: Aggregate all pairs with the same key

- Reduce: <Key, List(Value)> — <Key, List(Value)>
« Example: Add values for each key
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MapReduce Basics

Data:
- Represented as <Key, Value> pairs

Operations:

- Map: <Key, Value> — List(<Key, Value>)

- Shuffle: Aggregate all pairs with the same key

- Reduce: <Key, List(Value)> — <Key, List(Value)>
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Matrix Transpose

Given a sparse matrix in row major order
Output same matrix in column major order

Given:
row 1 | (col 1,a) [ (col 2. b) 'S
row2 | (col 2. ¢) | (col 3. d) c|d
e
row3 | (col2, e)




Matrix Transpose

Map: al|b

- Input: <row I, (coli, vali1), (col_jiz, valiz), ... > c|d
- Output: <coli1, (row i, vali)> €

- <colz, (row i, vali)>

row1 |(col1,3)| (col2, b) | =l coll | (row 1, a) col2 | (row1.b)
row2 | (col2.c)| (col3.d) | e | cOl2 | (row 2. ¢) col3 | (row2.d)

row3 | (col2, e) — col2 | (row3, e)




Matrix Transpose

Map: alb
- Input: <row i, (coli1, vali1), (col_jz, valiz), ... > c|d
- Output: <coli1, (row i, vali1)> €
- <coliz, (row 1, vali2)>
Shuffle:
col 1 | (ropt an | col1 | (row 1, a)
col2 | (row2, c)
col2 | (row3.e) —_— col2 | (row2.c)| (row1,b) | (row3, e)
oz | (row 1,b)
col3 | (row2, d) col3 | (row 2, d)




Matrix Transpose

Map: alb

(]
Q.

- Input: <row i, (colis, vali), (col_jz, val;), ... >

- Output: <coli1, (row 1, vali1)>
= <coliz, (row i, vali2)>

Shuffle

Reduce:
- Sort by row number

coll | (row1, 3) col1 | (row1,3a)

col2 | (row2.c) | (row1,b) | (row 3, e) | =) col2 | (row1,b) | (row2,c) | (row 3, e)

cold | (row2, d) col3 | (row2, d)




Matrix Transpose

Given a sparse matrix in row major order
Output same matrix in column major order

Given:
row1 | (col1,3) | (col 2, b) a b
row2 | (col2.c) | (col 3. d) c | d
e
row3 | (col2, e)
Output:

col1 | (row 1, 3)

col2 | (row1,b) | (row2,c) | (row3, e)

col3 | (row 2, d)




MapReduce Implications

Operations:
- Map: <Key, Value> — List(<Key, Value>)

« Can be executed in parallel for each pair.

- Shuffle: Aggregate all pairs with the same Key
« Synchronization step

- Reduce: <Key, List(Value)> — <Key, List(Value)>
« Can be executed in parallel for each Key



MapReduce Implications

Operations:
- Map: <Key, Value> — List(<Key, Value>)

« Can be executed in parallel for each pair
« Provided by the programmer

- Shuffle: Aggregate all pairs with the same Key
« Synchronization step
« Handled by the system

- Reduce: <Key, List(Value)> — <Key, List(Value)>
« Can be executed in parallel for each Key
« Provided by the programmer

The system also:
- Makes sure the data is local to the machine
- Monitors and restarts the jobs as necessary



Trying MapReduce

Hadoop:
- Open source version of MapReduce
- Can run locally

Amazon Web Services

- Upload datasets, run jobs
- Run jobs ... (Careful: pricing round to nearest hour, so debug first!)



The World of MapReduce

Practice:

- Used very widely for big data analysis
- Google, Yahoo!, Amazon, Facebook, Linkedin, ...

Beyond Simple MR:

- Many similar implementations and abstractions on top of MR: Hadoop,
Pig, Hive, Flume, Pregel, ...

- Same computational model underneath



MapReduce: Overview

Multiple Processors:
- 10s to 10,000s processors

Sublinear Memory
- A few Gb of memory/machine, even for Tb+ datasets
- Unlike PRAMs: memory is not shared

Batch Processing
- Analysis of existing data
- Extensions used for incremental updates, online algorithms



Modeling

For an input of size n :
Memory

- Cannot store the data in memory
- Insist on sublinear memory per machine: O(n'~¢) for some ¢ > 0
Machines

- Machines in a cluster do not share memory
- Insist on sublinear number of machines: O(n'~—*) for some ¢ > 0

Synchronization

- Computation proceeds in rounds

- Count the number of rounds
- Aim for O(1) rounds



Example

Distributed Sum:

- Given a set of nnumbers: a;.az,....a, €R , findS =) " a:
i

MapReduce:

- Compute M; = aji + ajks1 + ...+ @Qjgksry—1 for k= +/nin Round 1

- Round 2: add the /n partial sums.



Example

» Given a graph G = (V,E) on |V| = N vertices and
|[E| = M > N**¢ edges for some constant ¢ > 0, compute
Minimum Spanning Tree of the graph.

» |dea: Distribute edges randomly to machines. Compute MST
on the local edges. Combine and Repeat!



