
Algorithms for Data Science: Lecture 4

Barna Saha

1 The Chernoff + Union Bound
Often we will need to use the Chernoff bound and the union bound together. Recall the Union
Bound.
Union Bound.

Pr[B1 ∪B2 ∪ ∪Bn] ≤
n∑

i=1
Pr[Bi]

The idea behind the Chenoff+Union bound method is as following. Using the Chernoff
bound we will often be able to show that probability of a single bad event is minuscule. Hence,
even if there are many such bad event, each happening with minuscule probability, using the
Union bound over them we get

Pr[any of the bad event happens] = Pr[Bad1 ∪Bad2 ∪ ... ∪Badlarge] ≤
large∑
i=1

Pr[Badi]

Since for each i, Pr[Badi] = minuscule, even when taking sum over the large number of bad
events we have

large∑
i=1

Pr[Badi] =
large∑
i=1

minuscule = small.

Example 1 (Reservoir sampling gives uniform sampling).

We have seen the Chernoff+Union bound in action in the previous section when we analyzed
the outcome of reservoir sampling for items in [1, 100] over m iterations.

There the bad event Badi represents the event that item i is not sampled in the range
m

100 ±
m

200 . Using the Chernoff bound, for each i Pr[Badi] is minuscule.
Therefore, the probability that at least one of the bad event happens which will leave us

unconvinced about the uniformity of reservoir sampling is at most 100 ∗minuscule = small, by
taking union bound over the 100 bad events.

Lets take another example, and follow the above argument rigorously.

Example 2 (Random Load Balancing1).

Suppose you are a content delivery network–say, YouTube. Suppose that in a typical five-
minute time period, you get a million content requests, and each needs to be served from one of
your, say, 1000 servers. How should you distribute the requests (let’s call them “jobs”) across
your servers to balance the load? You might consider a round-robin policy, or a policy wherein
you send each job to the server with the lowest load. But each of these requires maintaining
some state and/or statistics, which might cause slight delays. You might instead consider the
following extremely simple and lightweight policy, which is surprisingly effective: assign each job
to a random server.

1https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf

1

Let us use n to denote the number of jobs and k to denote the number of servers. Hence,
n = 106 and k = 103.

Define an indicator random variable Xi
j which will be 1 if the job j is assigned to server i

and 0 otherwise. Then Xj =
∑n

i=1 Xi
j denote the load on machine i. We have

E[Xj] =
n∑

i=1
E[Xi

j] = n

k

Then, we have by the Chernoff bound

Pr
[
Xj >

n

k
+ 3
√

ln k

√
n

k

]
= Pr

Xj >
n

k

1 + 3
√

ln k√
n
k


≤ e

− n
3k

9 ln k
n
k = 1

k3

Let us call the above Xj > n
k + 3

√
ln k

√
n
k as bad event Badj . Then,

Pr
[
maximum load on any machine is >

n

k
+ 3
√

ln k

√
n

k

]
= Pr [any of the bad events happen]

= Pr [Bad1 ∪Bad2 ∪ ∪Badk] ≤ k

k3 = 1
k2

Hence,

Pr
[
the maximum load is ≤ n

k
+ 3
√

ln k

√
n

k

]
≥ 1− 1

k2

For n = 106 and k = 103, we get the maximum load is at most 103 + 250 with probability
≥ 1− 1

106 = 1− 0.000001 = 0.999999

2 Boosting by Median
Suppose there is a traffic sensor measuring the speed of vehicles passing by. It is often difficult
to obtain an exact measurement, and instead the sensor returns a measurement that is noisy.
Suppose, the actual speed of a vehicle is A. Imagine, that the sensor returns an estimate within
A± x with probability = 2

3 . So x is the error range which we are willing to tolerate. However,
we are not satisfied with only a confidence parameter of 2

3 . Rather we would like to be confident
that our obtained estimate is within the tolerated error range with probability, say ≥ 0.999.

Boosting by median is a generic technique that allows us to amplify the confidence of an
event whenever that event happens with probability at least 1

2 .
Instead of using one traffic sensor, let us use t = 2m + 1 traffic sensor each reporting an

independent measurement. Let Xi be the random variable denoting the measurement from the
ith sensor.

Arrange the measurements in non-decreasing order, and report the median estimate.
We now calculate the probability that the median estimate is not within the error range.

Let us use Xmed to denote the median.

Xmed is a bad estimate if either of the following two bad events happens.

(1) Xmed > A + x: this event can only happen if all the m estimates with value higher than
Xmed have also value > A + x.

2

(2) Xmed < A− x: this event can only happen if all the m estimates with value lower than
Xmed have also value < A− x.

So Xmed can be a bad estimate if at least m + 1 estimates out of 2m + 1 are out of the
tolerated error range. We will bound this probability using the Chernoff bound.

Define an indicator random variable Yi which is 1 if either Xi > A + x or Xi < A− x and 0
otherwise. Then Y =

∑t
i=1 Yi denote the number of sensors for which the reported value is not

within the tolerated error range. We have E[Y] = tE[Yi] = t Pr(Xi < A− x or Xi > A + x) = t
3 .

Then by the Chernoff bound,

Pr[Y ≥ m + 1] ≤ Pr[Y ≥ t

2] ≤ Pr
[
Y ≥ t

3(1 + 1
2)
]
≤ e− t

36

Take t = 36 ln 10000 ≤ 332, then

Pr [Xmed 6∈ [A± x]] ≤ Pr[Y ≥ m + 1] ≤ 1
10000

Or,

Pr [Xmed ∈ [A± x]] ≥ 1− 1
10000 = 0.9999

This shows that median is a robust estimator.

3 Extensions of Reservoir Sampling
Recall the reservoir sampling problem that we learnt in the first class. We have to sample s
elements uniformly at random from 1, 2, ..., N where N is unknown. The algorithm was simple.

• Maintain the first s items a1, a2, .., as in the reservoir.

• For t = s + 1, ...

– Sample the t element with probability s
t .

∗ If the t element is sampled then
· Select a position j in {1, 2, .., k} uniformly at random and replace the jth
element in the reservoir with the newly sampled t-th element.

Exercise 1. What is the expected number of insertions in the reservoir?

Drawback. The above algorithm is extremely sequential. It processes one element at a
time. Can we obtain a faster distributed algorithm? For example, such an algorithm in used in
Cloudera ML, an open-source collection of data preparation and machine learning algorithms for
Hadoop.

3.1 Distributed Reservoir Sampling

For every item ai select a random number Ri chosen uniformly at random (from the uniform
distribution) from [0, 1], and keep the s elements that have the largest values.

Can be implemented in the MapReduce framework (to be discussed later).
As a sequential algorithm, it has higher update time. You may need to maintain a min-heap

to extract and compare with the element in the reservoir with minimum value.

3

3.1.1 Analysis

Lemma 1. Consider two random variables U1 and U2 chosen according to uniform distribution
from [0, 1], then Pr(U1 ≤ U2) = 1

2 .

Proof.

Pr(U1 ≤ U2) =
∫ 1

U2=0

∫ U2

U1=0
dU1dU2 =

∫ 1

U2=0
U2dU2 = 1

2

Lemma 2. Consider n random variables U1, U2, ..., Un chosen according to uniform distribution
from [0, 1], then Pr(U1 ≤ U2 ≤ ≤ Un) = 1

n! .

Proof.

Pr(U1 ≤ U2 ≤ ≤ Un) =
∫ 1

Un=0

∫ Un

Un−1=0
....

∫ U3

U2=0

∫ U2

U1=0
dU1dU2...dUn = 1

n!

Therefore, if we arrange the items in non-decreasing order according to the value of the
associated random variable, we get a random permutation.

Hence, the probability that an item is in the last s positions (indicating s largest values) is

Pr(item ai is in the last s positions) = s(n− 1)!
n! = s

n
.

3.2 Weighted Reservoir Sampling

In the weighted reservoir sample, every item in the set has an associated weight, and we want to
sample such that the probability that an item is selected is proportional to its weight. Therefore,
if item i has weight wi and there are N items with N being unknown, we want that the ith item
is selected with probability proportional to wi

W where W =
∑N

i=1 wi.
The weighted reservoir sampling is based on the same idea as the distributed reservoir

sampling algorithm described above. For each item i in the stream, we compute a score as
follows: first, generate a random number Ui between 0 and 1 following the uniform distribution,
and then take the with root of Ui. Return the s items with the highest score as the sample.
Items with higher weights will tend to have scores that are closer to 1, and are thus more likely
to be picked than items with smaller weights.

The analysis of the algorithm is based on the following lemma.

Lemma 3. Consider two random variables U1 and U2 chosen according to uniform distribution

from [0, 1]. For some w1, w2 > 0, set X1 = U
1

w1
1 and X2 = U

1
w2

2 then Pr(X1 ≤ X2) = w2
w1+w2

.

Proof.

Pr(X1 ≤ X2) = Pr(U
1

w1
1 ≤ U

1
w2

)
2

= Pr(U1 ≤ U
w1
w2

2)

=
∫ 1

U2=0

∫ U

w1
w2

2

U1=0
dU1dU2

4

=
∫ 1

U2=0
U

w1
w2

2 dU2

= w2
w1 + w2

Exercise 2. Complete the proof of the weighted reservoir sampling.

5

	Concentration Inequalities
	Estimating a Parameter from a Sample
	How large a sample shall we take?
	Analysis

	Analysis of the number of iterations for the reservoir sampling from the exercise.
	The Chernoff + Union Bound
	Boosting by Median
	Extensions of Reservoir Sampling
	Distributed Reservoir Sampling
	Analysis

	Weighted Reservoir Sampling

