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1 Concentration Inequalities

Lemma 1 (Markov’s inequality). Let X be a non-negative random variable. For all λ > 0,

Pr[X > λ] ≤ E[X]
λ

Lemma 2 (Chebyshev Inequality). For all λ > 0,

Pr[|X −E[X]| > λ] ≤ var[X]
λ2

Lemma 3 (The Chernoff Bound: Upper bound). Let X1, X2, ..., Xn be independent random
variables taking values in {0, 1} with E[Xi] = pi. Let X =

∑n
i=1Xi, and µ = E[X]. Then the

following holds

1. For any δ > 0,

Pr[X ≥ (1 + δ)µ] <
(

eδ

(1 + δ)(1+δ)

)µ
2. For 0 < δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

3

Lemma 4 (The Chernoff Bound: Lower bound). Let X1, X2, ..., Xn be independent random
variables taking values in {0, 1} with E[Xi] = pi. Let X =

∑n
i=1Xi, and µ = E[X]. Then the

following holds

1. For any δ > 0,

Pr[X ≤ (1− δ)µ] <
(

e−δ

(1− δ)(1−δ)

)µ
2. For 0 < δ ≤ 1,

Pr[X ≤ (1− δ)µ] ≤ e−
µδ2

2

2 Estimating a Parameter from a Sample
Motivating Examples:

• Estimating gene mutation: We are interested in evaluating the probability that a particular
gene mutation occurs in the population.

• Popular query: We are interested in estimating the number of users searching for iPhone 7
release date in Google.

• Popular item: We are interested in the number of Amazon.com shoppers buying a particular
beauty product in the last month.
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Challenges:

• Given a DNA sample, a lab test can determine if it carries the mutation. However, the
test is expensive and we would like to obtain a relatively reliable estimate from a small
number of samples.

• We can examine the query log of every user to determine the total count of searches on
iPhone 7 release date. However, that will require a huge amount time for processing.

• We can examine the items purchased for every user in the last month to find the number of
users buying a particular beauty product. This will again require a long processing time.

In all the above scenarios, we would like to get a good estimate of the parameter of interest
using a relatively small number of samples.

2.1 How large a sample shall we take?

Let p be the unknown probability that a particular gene mutates, or a particular user searches
for iPhone 7 etc. We would like to estimate p.

Suppose we have taken n samples independently and uniformly from the entire pool of data.
Let n̂ = np̂ be the number of samples having the desired property (mutation, or query with
iPhone 7).

Given a sufficiently large number of samples, we expect that p̂ to be close to the actual
probability p. In particular, given a δ and aγ, we would like to obtain the minimum value of n
such that

Pr[p̂ ∈ [p− δ, p+ δ]] ≥ (1− γ)

that is, we have sufficient confidence at least (1− γ) that our estimated probability p̂ is not too
far from the actual probability p.

2.1.1 Analysis

Define an indicator random variable Xi which is 1 if the ith sample has the desired property
and 0 otherwise. Then

X =
n∑
i=1

Xi = np̂

denotes the number of sampled instances that have the desired property.
X is a sum of n independent random variables taking values in 0, 1. We have E[X] = np.

Note that, we cannot calculate E[X] as we do not know p. Then by the Chernoff bound,

Pr(p̂ < p− δ) = Pr(np̂ < np− nδ) = Pr(X < np(1− δ

p
))

= Pr(X < E[X](1− δ

p
)) ≤ e−E[X] δ

2
2p2 = e

−n δ
2

2p

Similarly,

Pr(p̂ > p+ δ) = Pr(np̂ > np+ nδ) = Pr(X > np(1 + δ

p
))

= Pr(X > E[X](1 + δ

p
)) ≤ e−E[X] δ

2
3p2 = e

−n δ
2

3p
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Therefore, by union bound,

Pr[p̂ 6∈ [p− δ, p+ δ]] ≤ e−n
δ2
2p + e

−n δ
2

3p

Since, we do not know p, let us put the trivial upper bound of p ≤ 1 in the above equation.
Then, we get

Pr[p̂ 6∈ [p− δ, p+ δ]] ≤ e−n
δ2
2 + e−n

δ2
3 ≤ 2e−n

δ2
3

Setting γ = 2e−n
δ2
3 , we obtain a trade-off between δ, n and the confidence parameter γ.

Example 1. If δ = 1
5 and γ ≤ 1

10 , then we must have e−
n
75 ≤ 1

20 , or n ≥ 75 ln 20 < 224

3 Analysis of the number of iterations for the reservoir sampling
from the exercise.

There are n items [1, n] , and we have used the reservoir sampling to select an item. We have
done this exercise m times, and have reported the number of times each item is selected. We are
interested to know how many iterations suffice to get a near uniform distribution of counts for
every item. Or in other words, we want for a given δ and γ

Pr(all items are sampled between m

n
−mδ to m

n
+mδ) ≥ (1− γ)

Let us define an indicator random variable Xj
i for i = 1 to m for the jth item.

Xj
i =

{
1 if the ith exercise samples the j element
0 otherwise

Then Xj =
∑m
i=1X

j
i gives the count for the jth element, the number of times it is sampled

out of m times. We have, E[Xj ] = m
n .

Let us select a new parameter γ′ = γ
n . We will apply the Chernoff bound with the new

parameters (δ, γ′) on Xj to get the following.

Pr(|Xj − E[Xj ]| ≥ mδ) = Pr(|Xj − E[Xj ]| ≥
m

n
nδ) ≤ 2e−

m
n
n2δ2/3 = 2e−mnδ2/3 ≤ γ′

From above, we obtain

m ≥ 3
nδ2 ln 2

γ′

Therefore, if m ≥ 3
nδ2 ln 2

γ′ then

Pr(|Xj − E[Xj ]| ≥ mδ) ≤ γ′

Hence by union bound,

Pr(∃j ∈ [1, n] such that |Xj − E[Xj ]| ≥ mδ) ≤ nγ′ = γ

Therefore, we conclude if m ≥ 3
nδ2 ln 2

γ′ then

Pr(all items are sampled between m

n
−mδ to m

n
+mδ) ≥ (1− γ)

Note that, we needed a new parameter γ′ = γ
100 to apply the Chernoff bound on each

individual item. Then, after the union bound, we have the desired confidence γ for all the
elements.
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Figure 1: m = 100
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Figure 3: m = 10000
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Figure 4: m = 100000

4 Extensions of Reservoir Sampling
Recall the reservoir sampling problem that we learnt in the first class. We have to sample s
elements uniformly at random from 1, 2, ..., N where N is unknown. The algorithm was simple.

• Maintain the first s items a1, a2, .., as in the reservoir.

• For t = s+ 1, ...

– Sample the t element with probability s
t .

∗ If the t element is sampled then
· Select a position j in {1, 2, .., k} uniformly at random and replace the jth
element in the reservoir with the newly sampled t-th element.

Exercise 1. What is the expected number of insertions in the reservoir?

Drawback. The above algorithm is extremely sequential. It processes one element at a
time. Can we obtain a faster distributed algorithm? For example, such an algorithm in used in
Cloudera ML, an open-source collection of data preparation and machine learning algorithms for
Hadoop.

4.1 Distributed Reservoir Sampling

For every item ai select a random number Ri chosen uniformly at random (from the uniform
distribution) from [0, 1], and keep the s elements that have the largest values.

Can be implemented in the MapReduce framework (to be discussed later).
As a sequential algorithm, it has higher update time. You may need to maintain a min-heap

to extract and compare with the element in the reservoir with minimum value.
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4.1.1 Analysis

Lemma 5. Consider two random variables U1 and U2 chosen according to uniform distribution
from [0, 1], then Pr(U1 ≤ U2) = 1

2 .

Proof.

Pr(U1 ≤ U2) =
∫ 1

U2=0

∫ U2

U1=0
dU1dU2 =

∫ 1

U2=0
U2dU2 = 1

2

Lemma 6. Consider n random variables U1, U2, ..., Un chosen according to uniform distribution
from [0, 1], then Pr(U1 ≤ U2 ≤ .... ≤ Un) = 1

n! .

Proof.

Pr(U1 ≤ U2 ≤ .... ≤ Un) =
∫ 1

Un=0

∫ Un

Un−1=0
....

∫ U3

U2=0

∫ U2

U1=0
dU1dU2...dUn = 1

n!

Therefore, if we arrange the items in non-decreasing order according to the value of the
associated random variable, we get a random permutation.

Hence, the probability that an item is in the last s positions (indicating s largest values) is

Pr(item ai is in the last s positions) = s(n− 1)!
n! = s

n
.

4.2 Weighted Reservoir Sampling

In the weighted reservoir sample, every item in the set has an associated weight, and we want to
sample such that the probability that an item is selected is proportional to its weight. Therefore,
if item i has weight wi and there are N items with N being unknown, we want that the ith item
is selected with probability proportional to wi

W where W =
∑N
i=1wi.

The weighted reservoir sampling is based on the same idea as the distributed reservoir
sampling algorithm described above. For each item i in the stream, we compute a score as
follows: first, generate a random number Ui between 0 and 1 following the uniform distribution,
and then take the with root of Ui. Return the s items with the highest score as the sample.
Items with higher weights will tend to have scores that are closer to 1, and are thus more likely
to be picked than items with smaller weights.

The analysis of the algorithm is based on the following lemma.

Lemma 7. Consider two random variables U1 and U2 chosen according to uniform distribution

from [0, 1]. For some w1, w2 > 0, set X1 = U
1
w1

1 and X2 = U
1
w2

2 then Pr(X1 ≤ X2) = w2
w1+w2

.

Proof.

Pr(X1 ≤ X2) = Pr(U
1
w1

1 ≤ U
1
w2

)
2

= Pr(U1 ≤ U
w1
w2

2 )

=
∫ 1

U2=0

∫ U

w1
w2

2

U1=0
dU1dU2
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=
∫ 1

U2=0
U

w1
w2

2 dU2

= w2
w1 + w2

Exercise 2. Complete the proof of the weighted reservoir sampling.
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