
Enabling Large Scale Analytics: From Theory to Practice

June 17, 2016.

Name: _____

Instructions:

- Answer the questions directly on the exam pages.
- Show all your work for each question. Providing more detail including comments and explanations can help with assignment of partial credit.
- If you need extra space, use the back of a page.
- You can use the course notes.
- If you have questions during the exam, raise your hand.

Question	Value	Points Earned
1	10	
2	20	
3	10	
Total	40	

Question 1. (10 points) We have learnt algorithms for the following problems in the class.

1. Bloom Filter
2. Count-Min sketch
3. Min-wise independent hashing
4. Locality sensitive hashing
5. Dense subgraph detection

Indicate which of the above are applicable in the following scenarios. No justification is required.

1.1 (2 points): *A journal editor wants to check quickly for plagiarism for every newly submitted article.*

Min-wise independent hashing/ Locality sensitive hashing

1.2 (2 points): *In computing, a denial-of-service (DoS) attack is an attempt to make a machine or network resource unavailable to its intended users, such as to temporarily or indefinitely interrupt or suspend services of a host connected to the Internet. This is done by sending a large volume of packets to the victim destination from multiple spoofed host ids.*

Count-Min Sketch

1.3 (2 points): *When sending an email to a client, you want the mail server to quickly check if the email address has been used previously.*

Bloom Filter

1.4 (2 points): *In a protein-protein interaction network, there is an edge between every pair of proteins. A highly connected subgraph in this network often refers to a protein complexes which need to be detected.*

Dense Subgraph Detection

1.5 (2 points): *The entire human genome which is a sequence of 4 unique characters A, C, G, and T is broken into smaller chunks and stored in a data structure to rapidly find segments which may contain high similarity to a known genetic mutation. The known genetic mutations can be provided any time as a sequence of A, C, G, and T characters.*

Locality sensitive hashing/ Min-wise independent hashing

Question 2. (20 points) In this question, you will have to show the output of various algorithms that you have learnt in the course.

2.1 (6 points): Show the execution of Count-Min sketch data structure on the following input. Draw the Count-Min sketch table.

2, 2, 15, 1, 10, 1, 1, 2, 15, 2

Assume there are 13 cells in each hash table. Use the following two hash functions:

1. $h_1(x) = (5 + 9x) \bmod 29 \bmod 13$
2. $h_2(x) = (4 + 7x) \bmod 29 \bmod 13$

0	3	0	0	0	0	0	0	1	0	4	2	0
0	0	0	1	0	4	0	0	0	2	0	3	0

2.2 (2 points): What are the estimated frequencies for 2, 15, 1 and 10?

4, 2, 3 and 1

2.3 (6 points): Compute the Jaccard similarities of each pair of the following three sets: $\{1, 2, 3, 4\}$, $\{2, 3, 5, 7\}$, and $\{2, 4, 6\}$. Consider the following permutation 10, 3, 1, 4, 2, 6, 8, 5, 9, 7, and compute the minhashes of the three sets based on this permutation.

$$\{1, 2, 3, 4\}, \{2, 3, 5, 7\} : \frac{2}{6} = \frac{1}{3}$$

$$\{2, 3, 5, 7\}, \{2, 4, 6\} : \frac{1}{6}$$

$$\{1, 2, 3, 4\}, \{2, 4, 6\} : \frac{2}{5}$$

Min-hashes: 3, 3, 4

2.4 (2 points): Consider the following locality sensitive hashing for 10-dimensional binary vectors, $\mathcal{H} = \{h_1, h_2, h_3, h_4, \dots, h_{10}\}$, where h_i returns the i th bit of the vector, $i = 1, 2, 3, 4, \dots, 10$. Compute $Prob_{h \sim \mathcal{H}}(h(x) = h(y))$ when $x = 0110111100$ and $y = 1100111000$, and also when $x = 0110111100$ and $y = 0001000101$.

$$Prob_{h \sim \mathcal{H}}(h(x) = h(y) \mid x = 0110111100, y = 1100111000) = \frac{7}{10}$$

$$Prob_{h \sim \mathcal{H}}(h(x) = h(y) \mid x = 0110111100, y = 0001000101) = \frac{3}{10}$$

2.5 (4 points): What is the expected density of a random graph where there is an edge between any pair of vertices with probability p ? Express the expected density in terms of number of vertices of the graph and p .

$\frac{(n-1)p}{2}$ where n is the number of vertices.

Question 3. (10 points) In this question, you will be tested on simple probability concepts.

Suppose X is the number of dust storms that occur on Mars next year. You should assume that X is a discrete uniform random variable that take one of the 101 values in the range $\{0, 1, 2, 3, \dots, 100\}$. Let $Y = |X - E(X)|$.

3.1 (3 points): Enter values for the following probabilities:

$$E(X) = \frac{1}{101} \frac{100 * 101}{2} = 50$$

$$var(X) = \frac{1}{101} \frac{100 * 101 * 201}{6} - 50^2 = 850$$

$$P(X = 12) = 1/101$$

3.2 (2 points): Enter the following values. You may use the fact $1 + 2 + \dots + 50 = 1275$.

$$P(Y = 0) = 1/101$$

$$P(Y = 1) = 2/101$$

$$P(Y = 2) = 2/101$$

$$E(Y) = (1 + 2 + \dots + 50) \times 2/101 = 2550/101$$

3.3 (2 points): By applying the Markov Bound to Y , give an upper bound for the following quantity:

$$P(|X - E(X)| \geq 30) = P(Y \geq 30) \leq E(Y)/30 = 2550/3030 = 85/101 = 0.84\dots$$

3.4 (2 points): By applying the Chebyshev Bound, give an upper bound for the following quantity:

$$P(|X - E(X)| \geq 30) \leq var(X)/30^2 = 850/900 = 17/18 = 0.94\dots$$

3.5 (1 points): What is the exact value of $P(|X - E(X)| \geq 30)$?

$$P(|X - E(X)| \geq 30) = P(Y = 30) + P(Y = 31) + \dots + P(Y = 50) = 21 \times 2/101 = 42/101 = 0.41\dots$$