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1 Clustering

Given a set of points with a notion of distance between points, group the points into some
number of clusters so that members of a cluster are “close” to each other, while members of
different clusters are far. The problem of clustering is ubiquitous. We may want to cluster
documents by topic they represent, we may want to cluster the moviegoers by the types of
movies they like, or cluster genes by their pattern etc. The clustering may seem easy in low-
dimensional Euclidean space, but becomes notoriously hard in higher dimensions and considering
non-Euclidean distances.

Often, given a set of points in a space, we would like to cluster them in a way to optimize
some goodness criteria that tells how closely knit the clusters are. There had been many such
proposals of goodness criteria. Here we elaborate on three such popular clustering paradigms:
k-center clustering, k-median clustering and k-means clustering.

2 k-center Clustering

In the k-center problem, the input is a set of vertices V' with distances d : V x V' — R between
them, and the goal is to select k centers such that the maximum distance to the closest center is
minimized over V.

The problem is NP-hard, and even cannot be approximated within any factor a > 1 unless
the distance d is a metric satisfying triangle inequality. Hence, we consider the Metric-k-center
problem and develop an approximation algorithm.

Suppose there exists k centers in V' such that the maximum distance that any vertex in V'
needs to travel to reach one of the centers is OPT. We will develop an algorithm in which each
vertex will have to travel at most 20 PT instead, that is we will develop a 2-approximation
algorithm for the metric-k center.

2.1 Greedy Algorithm
1. Pick any vertex v € V arbitrarily and declare it as the first center c;.

2. For i =2 to k do

(a) Select the vertex from V that is farthest from the already chosen centers, that is
maximizes the minimum distance to any of the chosen center—as the new ith center.

We will now show that this is a 2-approximation.
Theorem 1. The greedy algorithm returns a 2-approximation for the k-center problem.

Proof. Consider when the (th center ¢, is chosen. Cy_1 = {c1,co,..,ci—1} denote the already
chosen sets. It must happen that minimum distance from ¢; to Cy_; is lower than the minimum
distance ¢; to C;_1. If not, consider the following contradicting scenario.

Suppose minimum distance from ¢, to C;—; is to ¢;. Let j < — 1. Then while choosing the
ith center, the algorithm will prefer ¢y over ¢; as ¢y is farther than ¢; from C;—1. So suppose



j > 4. But then minimum distance of ¢y to C;—1 is only higher—so higher than c;, and again the
algorithm will prefer ¢, over ¢; as ¢y is farther than ¢; from C;_;. This gives a contradiction.

Now, after the k centers have been selected—consider the point ¢y € V that is farthest
from C. If that distance is < 20PT, we have a 2-approximation. So, suppose that distance
is > 20PT. That means by the previous argument, all pairwise distances between ¢; and c;,
i1#j€[l,k+1]is > 20PT.

Then among these k£ + 1 points, two must belong to the same optimum cluster and are thus
within distance at most OPT from one of the optimum centers. By triangle inequality, then
distance between them is at most 20 PT giving a contradiction. O

3 k-median Clustering

The k-center clustering is highly susceptible to outliers. To overcome this the clustering objective
one can try to minimize the sum of the distances to the minimum cluster center. This is known
as the k-median clustering.

Hence, in the k-median clustering, the goal is to select k centers ¢y, co, .., ¢i from C such that
S pev mink_; d(v,¢;)) is minimized.

Again the problem is N P-hard, and here we give a simple local search algorithm that can be
proven to give a good approximation factor.

3.1 Local Search

The following is a very intuitive algorithm to solve the k-median problem.

1. Start with any set of k-vertices from V as your centers C, let Cost(C) denote the value of
objective function for C as solution, that is Cost(C) = >_, ¢y mineec d(v, ¢).

2. If there exists z € V' \ C and Y € C such that swapping X and Y improves the solution
then swap them. That is if Cost(C — Y + X) < Cost(C) then Swap(X,Y).

3. Else return.

It can be shown that the above local search algorithm converges and gives a solution within
5 times of the optimum cost. There are better local search algorithms known that instead of
swapping one vertex at a time, consider multiple vertices swapping.

4 k-means Clustering

We now look at the k-means clustering which is one of the oldest and popular clustering
algorithms. In the k-means problem, instead of minimizing the sum of distances to the nearest
center, we try to minimize the sum of the squared distances to the nearest center. k-means
clustering is defined over the R¢ space for Euclidean distance. Moreover, the center does not
need to be a point in V itself. Given a set of points, we know if we select their mean as the
cluster center that will minimize the total squared distance! (why?)—which is the reason behind
the choice of name.

Solving the problem exactly is NP-Hard. 25 years ago, Llyod proposed another simple local
search algorithm which till date is the most popular algorithm for k-means clustering. A 2002
survey of data mining techniques states that it “is by far the most popular clustering algorithm
used in scientific and industrial applications.”



4.1 Llyod’s Algorithm
1. Begin with k arbitrary centers, typically chosen uniformly at random from the data points.
2. Assign each point to its nearest cluster center

3. Recompute the new cluster centers as the center of mass of the points assigned to the
clusters

4. Repeat Steps 1-3 until the process converges.

It can be shown that the objective function is monotonically decreasing, which ensures no
configuration is repeated. However, the convergence could be slow: k™ possible clusterings.

Moreover, the algorithm can converge to a local minima without any guarantee on the
objective function value.
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Figure 1: k-means get stuck in a local minima

4.2 Drawbacks of k-means clustering
e FEuclidean distance is used as a metric and variance is used as a measure of cluster scatter.

e The number of clusters k is an input parameter: an inappropriate choice of k may yield
poor results. That is why, when performing k-means, it is important to run diagnostic
checks for determining the number of clusters in the data set.

e Convergence to a local minimum may produce results far away from optimal clustering
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Figure 2: Alternative to select initial & clusters in k-means

4.3 k-means+-+

By selecting initial centers wisely k-means++ generalizes k-means and ensures the converged
local minima has an objective value close to the actual optimum objective.

To overcome the scenario depicted in Figure [} one can try the following fix, where we always
select the center that is farthest away from the currently opened centers.

However, such an assignment will be highly susceptive to outliers. For example, see Figure

Figure 3: Susceptibility to Outliers

k-means++ interpolates between selecting centers randomly and selecting centers only by
distance. Specifically, let D(z) denote the minimum distance of x to the nearest chosen cluster

2
centers. Then select x as a new center with probability %.
veV

It can be shown by this small change k-means++ returns a solution which is within an
O(log k)-factor of the optimum objective value.
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