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Statistical Physics
§The study of the emergent properties of many 

component systems using probabilistic methods.

§Objects of study are statistical ensembles of system 

states or histories:
•Thermal Equilibrium--Gibbs distribution:

•Non-equilibrium--stochastic dynamics



P [�] = probability of state �

T = temperature

Z = normalization (partition function)

kB = Boltzmann’s constant

H [�] = energy of state �

Gibbs Distribution
Thermal equilibrium: asymptotic stationary state in the absence of net 
fluxes of energy or mass.  Described by a few parameters, e.g. 
temperature.



The Partition Function 
and 

Free energy



Magnetism

Electrons each have a magnet moment. 



Ferromagnetism
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•Ferromagnetism (permanent magnetism) 
arises from the alignment of electron 
magnet moments, aka “spins.”
•Alignment is maintained over 
microscopic distances while the coupling 
distance between electrons is 
microscopic.
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Pure States

• At low temperature the Gibbs distribution for 
the Ising model can be decomposed into a 
linear combination of two “pure states,”  one 
mainly spin up and the other mainly spin 
down.  The two pure states are related by the 
up-down symmetry of the energy function.
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Spin Glasses

   are quenched (fixed) Gaussian random 
couplings with mean zero and variance 
one.

J > 0, ferromagnetic

J < 0, antiferromagnetic

•Random magnetic alloys:  CuMn, ...

•Ising spin glass (Edward-Anderson model, 1975)  
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Rough free energy
landscape.

Frustration



?

Rough free energy
landscape. Finding ground 

states is NP-hard 
(non-planar graphs)

Frustration



• Spin overlap:

The superscripts refer to two independent spin configurations from the same 
problem instance.
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An example of an overlap histogram for a 
single 8x8x8 instance at low temperature.

• Spin overlap:

The superscripts refer to two independent spin configurations from the same 
problem instance.
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Mean Field Theory

• Sherrington-Kirkpatrick model  (1975)
–Ising spin glass on the complete graph



• Replica symmetry breaking (RSB)
• Overlap distribution not self-averaging
• Countable infinity of “pure states”
• Ultrametricity 

Parisi’s solution for the SK Model (1979)
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What about finite d?

• Mean field (complete graph) results are often 
qualitatively correct for finite-dimensional 
systems.

• Does RSB apply to the three-dimensional 
Ising spin glass (Edwards-Anderson model)?



• Low temperature phase of 3D Ising spin glass 
consists of a pair of pure states related by up-down 
symmetry (similar to the ordinary Ising model).

• Low lying excitations are isolated compact “droplets” 
of flipped spins. 

Droplet Picture
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Fisher & Huse, Bray & Moore 1985
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• Spin overlap:
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Computational Studies of 
Spin Glasses

•Find ground states using branch and bound or genetic 
algorithms.
•Find ground states, sample thermal states and compute 
free energies using polynomial time algorithms in 2D
•Find ground states, sample thermal states and estimate free 
energies using Monte Carlo methods for d>2 and the 
complete graph

-Parallel tempering
-Population annealing



• Markov chain Monte Carlo 
(MCMC) at a single temperature 
such as the Metropolis-Hastings 
algorithm gets stuck in local 
minima.

Problem
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• Modification of simulated annealing for equilibrium 
sampling.

• A population of replicas is cooled according to an 
annealing schedule.  Each replica is acted on by the 
Metropolis-Hastings at the current temperature.

• During each temperature step, the population is 
differentially reproduced (resampled) according to the 
correct Boltzmann re-weighting to maintain equilibrium.

• See: Phys. Rev. E 82, 026704 (2010); E 92, 063307 (2015)

Population Annealing
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FIG. 3: The variance of the free energy Var(�F̃ ) vs. the prob-
ability of a small overlap, ⇥, for a sample of 25 disorder real-
izations.
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FIG. 4: The histogram of the dimensionless free energy, ��F .
The solid line is the best fit to a Gaussian distribution.

spin glasses and perhaps other systems with rough free
energy landscapes. By using weighted averages over an
ensemble of runs, biases inherent in a single run can be
can be made small and high precision results can be ob-
tained. The method can be optimized by minizing the
variance of the free energy estimator. If the variance of
the free energy estimator is less than unity, high precision
results can be obtained from a relatively small ensemble
of runs. The method is comparable in e�ciency to par-
allel tempering and is well suited to parallelization.
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Population Annealing is related to...

➡Simulated annealing

➡Sequential Monte Carlo
- See e.g. “Sequential Monte Carlo Methods in Practice”, A. Doucet, et. al. (2001)

- aka Particle Filters

- Nested Sampling, Skilling

• Go with the Winners,  Grassberger (2002)

• Diffusion (quantum) Monte Carlo

• Nonequilibrium Equality for Free Energy Differences,  Jarzynski (1997)

• Histogram Re-weighting, Swendsen and Ferrenberg (1988)



Population Annealing
E1 E2 E3 E4 E5 ER
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Population Annealing
E1 E2 E3 E4 E5 ER

β=1/kT ...

βʹ′

Population annealing = simulated  annealing with 
differential reproduction (resampling) of replicas

R replicas



Temperature Step
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Replica j is reproduced nj times 
where nj is an integer random 
variate with mean τj.
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p(E)

E

�0

Systematic Errors

�0Resampled population represents the Gibbs distribution at 

... but new population is biased toward high energy and correlated



Direct Estimate of Free Energy

��kF (�k) =
K�

⇥=k

lnQ(�⇥+1, �⇥) + �KF (�K)

Q(�,��) =
�R

j=1 exp [�(�� � �)Ej ]
R
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the multinomial distribution p [R;n
1

, . . . , nR; ⇢
1

/R, . . . , ⇢R/R] for R trials. In this implementation the population size
is fixed. Other valid resampling methods are available. For example, the number of copies of replica j can be chosen
as a Poisson random variable with mean proportional to ⇢j(�,�0), in which case the population size fluctuates [13].

For large R and small (�0��), the resampled distribution is close to an equilibrium ensemble at the new temperature,
�0. However, the regions of the equilibrium distribution for �0 that di↵er significantly from the equilibrium distribution
for � are not well sampled, leading to biases in the population at �0. In addition, due to resampling, the replicas
are no longer independent. To mitigate both of these problem, the equilibrating subroutine is now applied. Finally,
observables are measured by averaging over the population.

The entire algorithm consists of S�1 steps: in step k the temperature is lowered from �S�k to �S�k�1

via resampling
followed by the application of the equilibrating subroutine and data collection at temperature �S�k�1

.
Population annealing permits one to estimate free energy di↵erences. If the annealing schedule begins at infinite

temperature corresponding to �S = 0, then it yields an estimate of the absolute free energy F̃ (�k) at every temperature
in the annealing schedule. The following calculation shows that the normalization factor Q(�,�0) is an estimator of
the ratio of the partition functions at the two temperatures:

Z(�0)
Z(�)

=
P

� e��0E�

Z(�)

=
X

�

e�(�0��)E� (
e��E�

Z(�)
)

= he�(�0��)E� i�

⇡ 1
R

RX

j=1

e�(�0��)Ej = Q(�,�0). (4)

The summation over � is a sum over the microstates of the system while the sum over j is a sum over the population
of replicas in PA. The last approximate equality becomes exact in the limit R ! 1. From Eq. 4 the estimated free
energy di↵erence from � to �0 is found to be

��0F̃ (�0) = ��F (�) + log Q(�,�0), (5)

where F (�) is the free energy at � and F̃ is the estimated free energy at �0. Given these free energy di↵erences, if
�S = 0, then the PA estimator of the absolute free energy at each simulated temperature is

��kF̃ (�k) =
S�1X

`=k+1

log Q(�`, �`�1

) + log ⌦, (6)

where ⌦ =
P

� 1 is the total number of microstates of the system; i.e. , kB log ⌦ is the infinite temperature entropy.

III. PARALLEL TEMPERING

Parallel tempering, also known as replica exchange Monte Carlo, simultaneously equilibrates a set of R replicas of
a system at S inverse temperatures

�
0

> �
1

> . . . ,�S�1

. (7)

There is one replica at each temperature so that R = S in contrast to population annealing, where typically the
number R of replicas greatly exceeds the number S of temperatures; i.e. , R � S. The equilibrating subroutine
operates on each replica at its respective temperature. Replica exchange moves are implemented that allow replicas
to di↵use in temperature space. The first step in a replica exchange move is to propose a pair of replicas (k, k� 1) at
neighboring temperatures � = �k and �0 = �k�1

. The probability for accepting the replica exchange move is

p
swap

= min
h
1, e(���0

)(E�E0
)

i
. (8)

Here E and E0 are the respective energies of the replicas that were originally at � and �0. If the move is accepted,
the replica equilibrating at � is now set to equilibrate at �0 and vice versa. Equation 8 insures detailed balance so
that the Markov chain defined by parallel tempering converges to a joint distribution whose marginals are equilibrium

Derivation:



• Results from small population runs are biased.

• Results from independent runs can be combined and 
biases reduced using weighted averages.

• Observables from each run weighted by the exponential 
of the free energy estimator for that run.

Weighted Averaging

A(�) =
M�

m=1

Ãm(�)⇥m(�)

JM, PRE82,26704(2010)

!m(�) =
Rme��F̃m(�)

PM
i=1 Rme��F̃i(�)



Weighted Averaging
Imagine population annealing with unlimited resources and let the 
population in each run m grow according to unnormalized weights 

<m = Rm

Y

�k

Qm(�k) = e��F̃m(�)

An ordinary average over the combined populations of unlimited 
PA is equivalent to a weighted average with standard PA

⌧i = exp [�(�0 � �)Ei]

final population of run m

z }| {
· · · · ·

z }| {
· · · · · · ·

z }| {
· · · · · · · · · · ·

z }| {
· · · · ·

<1 <2 <3 <M



Weighted Averaging
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Systematic Errors

If an observable is a function of the free energy estimator 
there will be a systematic error (bias) proportional to the 
variance of the free energy estimator.

�Asystematic ⇡ �(Var�F̃ )
dÃ

�dF̃
⇡ �⇢0

R

dA

�dF

⇢0 = lim
R!1

R Var�F̃



Systematic Errors

If an observable is a function of the free energy estimator 
there will be a systematic error (bias) proportional to the 
variance of the free energy estimator.

�Asystematic ⇡ �(Var�F̃ )
dÃ

�dF̃
⇡ �⇢0

R

dA

�dF

⇢0 = lim
R!1

R Var�F̃

  is the population size scale for systematic errors
(like the exponential autocorrelation time for MCMC)

⇢0



Convergence in Population Size
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•Simulate a population of R 
replicas with resampling (PA) and 
without  resampling (SA) holding 
the annealing schedule fixed. 
•Do for many spin glass instances.  
• The vertical axis is the disorder 
averaged probability of finding the 
true ground state. 
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Population annealing is far more efficient than simulated 
annealing with almost no overhead

•Simulate a population of R 
replicas with resampling (PA) and 
without  resampling (SA) holding 
the annealing schedule fixed. 
•Do for many spin glass instances.  
• The vertical axis is the disorder 
averaged probability of finding the 
true ground state. 
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Overlap Near the Origin
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Chaos

• A small change in the parameters 
(temperature, bond strengths,...) induces a 
large change in the spin configuration. 



Thermal Boundary Conditions

• What: TBC ensemble includes the 2d possible 
combinations of periodic and anti-periodic 
boundary conditions in the d spatial directions 
each with the correct Gibbs weight.

• Why: 
– Suppression of  BC’s that induce domain walls may lead to milder 

finite size corrections.
– Access to a new measures of chaos, spin stiffness and other quantities.

• See also:
– Thomas and Middleton, PRB 76, 220406(R) (2007)
– Hasenbusch, Physica A 197, 423 (1993)
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Temperature Chaos and Hardness
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Questions

• Other ideas from CS about what makes an 
instance hard? 

• Is sampling from the joint instance/solution 
distribution easier than first choosing a 
problem and then solving it?



Conclusions
• The spin glass is an example of an NP-hard problem 

relevant to physics.
• Population annealing is an effective algorithm for 

sampling thermal states and finding ground states of spin 
glasses.

• It is not known yet whether ordering occurs in the 3D spin 
glass via the many-state RSB picture or the simpler 
droplet picture with a single pair of pure states.

• Temperature chaos in spin glasses is associated with the 
hardness of an instance (for population annealing).


