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Statistical Physics

"The study of the emergent properties of many

component systems using probabilistic methods.

"Objects of study are statistical ensembles of system

states or histories:

*Thermal Equilibrium--Gibbs distribution:

Pl = %exp(—H[o] JkpT)

*Non-equilibrium--stochastic dynamics




Gibbs Distribution

Thermal equilibrium: asymptotic stationary state in the absence of net
fluxes of energy or mass. Described by a few parameters, e.g.
temperature.

i %exp(—H[a] JkpT)

P |o| = probability of state o

H |o] = energy of state o T = temperature

Z = normalization (partition function)

kp = Boltzmann’s constant




The Partition Function
and

Free energy




Magnetism

Electrons each have a magnet moment.




Ferromagnetism

eFerromagnetism (permanent magnetism)
arises from the alignment of electron
magnet moments, aka “spins.”

e Alignment 1s maintained over
microscopic distances while the coupling
distance between electrons 1s
miCroscopic.




Ising Model




Ising Model

Aligned spins lower the energy
and vice versa:

1o 34
tdor td




Ising Model

T 33
Aligned spins lower the energy Two ground states:
and vice versa:

1o 34
tdor td




Ising Model Behavior

H[O’] — _JZSiSj
(4,5)

Plo] = %exp(—H o] kT

Gibbs Distribution
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Pure States

* At low temperature the Gibbs distribution for
the Ising model can be decomposed 1nto a
linear combination of two “pure states,” one
mainly spin up and the other mainly spin
down. The two pure states are related by the
up-down symmetry of the energy function.




Spin Glasses

eRandom magnetic alloys: CuMn, ...

e[sing spin glass (Edward-Anderson model, 1975)

J > 0, ferromagnetic |
H[O’] — — Z JijSZ'Sj
(2,9)

S; — 1

J <0, antiferromagnetic |

J;; are quenched (fixed) Gaussian random
couplings with mean zero and variance

once.




Frustration
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Frustration
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Rough free energy
landscape.

configuration

free energy
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Rough free energy
landscape.

S Finding ground
~ states is NP-hard
(non-planar graphs)




Spin Glass Order

- . _ 1 (1) (2)
» Spin overlap:  ¢= & Z st s

The superscripts refer to two independent spin configurations from the same
problem instance.
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Spin Glass Order

- . | (1) (2)
» Spin overlap:  ¢= & Z st s

The superscripts refer to two independent spin configurations from the same
problem instance.

3e.406

31898.1xt

No order

-1 0.5 0 0.5
q
An example of an overlap histogram for a

single 8x8x8& instance at low temperature.




Mean Field Theory

» Sherrington-Kirkpatrick model (1975)

—Ising spin glass on the complete graph

1
Hlo] = T~ (Z]) Jii5i5;




Parisi’s solution for the SK Model (1979)

* Replica symmetry breaking (RSB)

» Overlap distribution not self-averaging
* Countable infinity of “pure states”

» Ultrametricity
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What about finite d?

* Mean field (complete graph) results are often
qualitatively correct for finite-dimensional
systems.

* Does RSB apply to the three-dimensional
Ising spin glass (Edwards-Anderson model)?




Droplet Picture

Fisher & Huse, Bray & Moore 1985

* Low temperature phase of 3D Ising spin glass
consists of a pair of pure states related by up-down
symmetry (similar to the ordinary Ising model).

* Low lying excitations are 1solated compact “droplets™

of thipped spins.




RSB vs Droplet

* Spin overlap:




RSB vs Droplet

e Spj - _ 1 (1) (2)
Spin overlap: 1=+ Z st s

droplet

q
An example of overlap distributions for
three disorder instances.




RSB vs Droplet

e Spj - _ 1 (1) (2)
Spin overlap: 1=+ Z st s

droplet

q
An example of overlap distributions for
three disorder instances.




Computational Studies of
Spin Glasses

eFind ground states using branch and bound or genetic
algorithms.
eFind ground states, sample thermal states and compute
free energies using polynomial time algorithms 1n 2D
eFind ground states, sample thermal states and estimate free
energies using Monte Carlo methods for d>2 and the
complete graph

-Parallel tempering

-Population annealing




Problem

configuration

® Markov chain Monte Carlo
(MCMC) at a single temperature
such as the Metropolis-Hastings
algorithm gets stuck in local
minima.

free energy




Problem

configuration

® Markov chain Monte Carlo
(MCMC) at a single temperature
such as the Metropolis-Hastings
algorithm gets stuck in local
minima.

free energy
>

probability




Ayjigeqoud
«

configuration

ABiaua aal)

Ayjgeqoud
A :

configuration

ABi1aua 2oy}




Population Annealing

K. Hukushima and Y. Iba, in THE MONTE CARLO
METHOD IN THE PHYSICAL SCIENCES: Celebrating
the 50th Anniversary of the Metropolis Algorithm, edited
by J. E. Gubernatis (AIP, 2003), vol. 690, pp. 200—206.

Modification of simulated annealing for equilibrium
sampling.

A population of replicas 1s cooled according to an
annealing schedule. Each replica is acted on by the
Metropolis-Hastings at the current temperature.

During each temperature step, the population 1s
differentially reproduced (resampled) according to the
correct Boltzmann re-weighting to maintain equilibrium.

See: Phys. Rev. E 82, 026704 (2010); E 92, 063307 (2015)




Population Annealing is related to...

B Simulated annealing
= Scquential Monte Carlo

See e.g. “Sequential Monte Carlo Methods in Practice”, A. Doucet, et. al. (2001)

- aka Particle Filters

-~ Nested Sampling, Skilling
Go with the Winners, Grassberger (2002)
Diffusion (quantum) Monte Carlo

Nonequilibrium Equality for Free Energy Differences, Jarzynski (1997)

Histogram Re-weighting, Swendsen and Ferrenberg (1988)




Population Annealing

e

R replicas




Population Annealing

-

R replicas

AT
S HE T S

Population annealing = simulated annealing with
differential reproduction (resampling) of replicas




Temperature Step

s

7_(5 5/) __ exp [_(ﬁ/ _ ﬁ)EJ] . . .
PP = Q5,5 Replica j is reproduced #n; times

where n; 1s an integer random
SF exp[— (8 — B)E;] variate with mean ;.
]:

R

Q(B,3") =




Temperature Step

s

Replica j 1s reproduced #»; times
where »; 1s an 1nteger random
variate with mean 7;.




Systematic Errors

p(E)

Population represents the Gibbs distribution at (3




p(E)

Systematic Errors




Systematic Errors

p(E)

E

Resampled population represents the Gibbs distribution at 3’

... but new population 1s biased toward high energy and correlated




Direct Estimate of Free Energy

St exp[—(8 — B)Ej]
R

Q(B,8") =

— Bk F (Br) Zln@ Be+1,Be) + B F(Bk)

Derivation: 2) _ X,¢""
2(6) Z(8)

_ @ -pE, ¢
;6 Zm

:< —(B ﬁ)E>

5

~ Ze TERE = Q(B.5).




Weighted Averaging

JM, PRES2,26704(2010)

Results from small population runs are biased.

Results from independent runs can be combined and
biases reduced using weighted averages.

Observables from each run weighted by the exponential
of the free energy estimator for that run.

Rme_ﬁﬁm (6)

B fo\il Rme_ﬁﬁz(ﬁ)




Weighted Averaging

Imagine population annealing with unlimited resources and let the
population in each run m grow according to unnormalized weights

T; — €XP [—(5/ — B)E;]
B = B [[ Qun(Be) = 72

final population of run m B

An ordinary average over the combined populations of unlimited
PA is equivalent to a weighted average with standard PA




Weighted Averaging
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Systematic Errors

If an observable is a function of the free energy estimator
there will be a systematic error (bias) proportional to the
variance of the free energy estimator.

BdF R BdF

po = lim R VarSF

R— o0

5Asystematic ~ ( arﬁF)




Systematic Errors

If an observable is a function of the free energy estimator
there will be a systematic error (bias) proportional to the
variance of the free energy estimator.

BdF R BdF

po = lim R VarSF

R— o0

5Asystematic ~ ( arﬁF)

po is the population size scale for systematic errors
(like the exponential autocorrelation time for MCMC)




Convergence in Population Size
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Compare PA and SA for finding GS's

eSimulate a population of R
replicas with resampling (PA) and
without resampling (SA) holding
the annealing schedule fixed.

*Do for many spin glass instances.
e The vertical axis 1s the disorder
averaged probability of finding the
true ground state.




Compare PA and SA for finding GS's

eSimulate a population of R
replicas with resampling (PA) and
without resampling (SA) holding

the annealing schedule fixed.

*Do for many spin glass instances.
e The vertical axis 1s the disorder
averaged probability of finding the
true ground state.

Population annealing 1s far more efficient than simulated
annealing with almost no overhead




RSB vs Droplet

* Spin overlap:




RSB vs Droplet

e Spj - _ 1 (1) (2)
Spin overlap: 1=+ Z st s

droplet

q
An example of overlap distributions for
three disorder instances.
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Nature of the spin-glass phase at

experimental length scales 3D ISing Spin glaSS

R Alvarez Banos'~, A Cruz'“, L A Fernandez'”,
J M Gil-Narvion', A Gordillo-Guerrero' ', M Guidetti’,
A Maiorano'", F Mantovani’, E Marina_ri".
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B Seoane'”’, A Tarancon'~, R Tripiccione’ and D Yllanes'’
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Nature of the spin-glass phase at
experimental Iength scales
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3D Ising spin glass
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Overlap Near the Origin

0.2
l; = /0 , P;(q)dq Disorder averaged overlap near the origin

Overlap near the origin @ T =0.42PBC @ T =0.2PBC
o 1T =0.42TBC 4 1T'=0.2TBC
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[ >0 as L—oo 1implies the RSB picture




RSB vs Droplet Il

Alan, ) = Prob | max {1 (Pr(a) + Pr(=0)) } >

lg|<qo

A(qo, k) — 0
single pair of pure states

A(qo, k) — 1
many pairs of pure states
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Chaos

* A small change 1n the parameters
(temperature, bond strengths,...) induces a
large change 1n the spin configuration.




Thermal Boundary Conditions

e What: TBC ensemble includes the 2¢ possible
combinations of periodic and anti-periodic
boundary conditions 1n the d spatial directions
each with the correct Gibbs weight.

o Why:
— Suppression of BC’s that induce domain walls may lead to milder
finite size corrections.
— Access to a new measures of chaos, spin stiffness and other quantities.

o See also:

— Thomas and Middleton, PRB 76, 220406(R) (2007)
— Hasenbusch, Physica A 197, 423 (1993)




Temperature Chaos
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eFor many (but not all)
disorder realizations
the dominant boundary
condition changes
chaotically with
temperature.
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Temperature Chaos
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crossings
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eFor many (but not all)
disorder realizations
the dominant boundary
condition changes
chaotically with
temperature.
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Temperature Chaos and Hardness
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Questions

e Other 1deas trom CS about what makes an
instance hard?

* [s sampling from the joint instance/solution
distribution easier than first choosing a
problem and then solving it?




Conclusions

* The spin glass 1s an example of an NP-hard problem
relevant to physics.

* Population annealing is an effective algorithm for
sampling thermal states and finding ground states of spin
glasses.

* It 1s not known yet whether ordering occurs in the 3D spin
glass via the many-state RSB picture or the simpler
droplet picture with a single pair of pure states.

» Temperature chaos in spin glasses is associated with the
hardness of an instance (for population annealing).




