
Lower bound for streaming algorithms

Barna Saha

1 Communication Complexity

Suppose there are two parties, Alice and Bob. Alice has an input x ∈ {0, 1}a, Bob an input
y ∈ {0, 1}b. Neither one has any idea what the other’s input is. Alice and Bob want to cooperate
to compute a Boolean function: f : {0, 1}a × {0, 1}b → {0, 1}, defined on their joint input.

We here only consider one-way communication complexity. Alice sends Bob a message z
which is only a function of her input x. Bob computes the function f(x, y) based on z and y,
and declare it.

The one-way communication complexity of a Boolean function f is the minimum worst-case
number of bits used by any 1-way protocol that correctly decides the function (or say decide it
correctly with probability > 1

2).
Note that, one-way communication complexity of a function f is always at most a, since

Alice can send her entire input to Bob who can then compute the function exactly.

2 Connection to Streaming Algorithm
Small-space streaming algorithms imply low one-way communication complexity. Consider a
problem that can be solved using a streaming algorithm S that uses space s only. The idea is
for Alice and Bob to treat their input (x, y) as a stream, with all of x arriving before any of y
arrives. Alice can then feed x to S, which returns a summary of size s bits. Alice sends these
s bits of information to Bob. Bob can then simply restart the streaming algorithm S seeded
with s, and feed y to it. The algorithm them computes some function of (x, y) with one way
communication of s bits.

The communication cost of the induced protocol is exactly the same as the space used by
the streaming algorithm.

To prove lower bound on space usage of a streaming algorithm, we need to come up with a
Boolean function that (i) can be reduced to a streaming problem that we want to study, and (ii)
does not admit a low one-way communication complexity.

3 The Disjointness Problem
Alice and Bob both hold n-bit vectors x and y. We interpret these as characteristic vectors of
two subsets of the universe {1, 2,, n} with the subsets corresponding to the 1 coordinates. We
then define the Boolean function DISJ as DISJ(x, y) = 0 if there is an index i ∈ {1, 2, ..., n}
with xi = yi = 1, and DISJ(x, y) = 1 otherwise.

Here are some well-knows results.

Theorem 1. Every deterministic one-way communication protocol that computes the function
DISJ uses at least n bits of communication in the worst case.

Easy to prove using Pigeonhole Principle. Consider any 1-way communication protocol
where Alice always sends at most n− 1 bits. This means, ranging over 2n possible inputs x that
Alice might have, the possible number of different messages is at most 2n−1. Therefore, by the

1

Pigeonhole Principle, there exist at least two inputs x1 and x2 for which Alice sends the same
message z. Suppose x1 and x2 differ in the ith coordinate, and y is simple the ith basis vector
(all 0s except the ith position). Since Bob only receives z and has y, for both x1 and x2, Bob
computes the same answer–thus the protocol is incorrect.

However, a stronger result for randomized protocols can also be proven.

Theorem 2. Every randomized protocol that, for every input (x, y), correctly decides the function
DISJ with probability at least 2

3 , uses Ω(n) communication in the worst case.

The probability in the above theorem is over the coin flips performed by the protocol–there is
no randomness in the input, which is “worst-case”. There is nothing special about the constant
2
3 which can be replaced by any constant > 1

2 .

4 Space Lower Bound for F∞

We have see space-efficient streaming algorithms for computing F0 (distinct items), F2 (F1 is
easy), and heavy-hitters. Here we show that if we have to compute the maximum frequency
within some constant factor of approximation in a single pass, then the space requirement is
Ω(n), even using a randomized algorithm.

Theorem 3. Every randomized streaming algorithm that, for every data stream of length m,
computes F∞ to within (1± .2) factor with probability at least 2/3 uses space Ω(min{m, n}).

We will reduce DISJ to streaming computation of F∞.
Suppose S is a streaming algorithm using space s that computes F∞. Given an input (x, y)

of DISJ , Alice sends to S, (i, 1) for every xi = 1. S then computes a summary of size s and
sends it to Bob. Bob, seeds S with s, and feeds (i, 1) for every yi = 1. At the end if S returns
an answer ≥ 1.6, then Bob declares DISJ = 0, else it declares DISJ = 1.

Note that F∞ = 2 iff the two sets x and y are not disjoint, that is DISJ = 0. In that case S
returns an estimate of F∞ at least 0.8 ∗ 2 = 1.6.

When DISJ = 1, F∞ = 1 (or 0 if x and y are empty), in that case S can return an estimate
at most 1.2.

Therefore, from the hardness of communication complexity of DISJ , we conclude that
computing F∞ in the streaming setting in a single pass requires Ω(min{m, n}) space, even using
a randomized protocol.

2

	Communication Complexity
	Connection to Streaming Algorithm
	The Disjointness Problem
	Space Lower Bound for F

