Lower bound for streaming algorithms

Barna Saha

1 Communication Complexity

Suppose there are two parties, Alice and Bob. Alice has an input z € {0,1}%, Bob an input
y € {0,1}". Neither one has any idea what the other’s input is. Alice and Bob want to cooperate
to compute a Boolean function: f : {0,1}% x {0,1}* — {0,1}, defined on their joint input.

We here only consider one-way communication complexity. Alice sends Bob a message z
which is only a function of her input z. Bob computes the function f(x,y) based on z and y,
and declare it.

The one-way communication complexity of a Boolean function f is the minimum worst-case
number of bits used by any 1-way protocol that correctly decides the function (or say decide it
correctly with probability > %)

Note that, one-way communication complexity of a function f is always at most a, since
Alice can send her entire input to Bob who can then compute the function exactly.

2 Connection to Streaming Algorithm

Small-space streaming algorithms imply low one-way communication complexity. Consider a
problem that can be solved using a streaming algorithm S that uses space s only. The idea is
for Alice and Bob to treat their input (x,y) as a stream, with all of z arriving before any of y
arrives. Alice can then feed x to S, which returns a summary of size s bits. Alice sends these
s bits of information to Bob. Bob can then simply restart the streaming algorithm S seeded
with s, and feed y to it. The algorithm them computes some function of (x,y) with one way
communication of s bits.

The communication cost of the induced protocol is exactly the same as the space used by
the streaming algorithm.

To prove lower bound on space usage of a streaming algorithm, we need to come up with a
Boolean function that (i) can be reduced to a streaming problem that we want to study, and (ii)
does not admit a low one-way communication complexity.

3 The Disjointness Problem

Alice and Bob both hold n-bit vectors x and y. We interpret these as characteristic vectors of
two subsets of the universe {1,2,....,n} with the subsets corresponding to the 1 coordinates. We
then define the Boolean function DISJ as DISJ(z,y) = 0 if there is an index i € {1,2,...,n}
with z; = y; = 1, and DISJ(z,y) = 1 otherwise.

Here are some well-knows results.

Theorem 1. Fvery deterministic one-way communication protocol that computes the function
DISJ uses at least n bits of communication in the worst case.

Easy to prove using Pigeonhole Principle. Consider any 1-way communication protocol
where Alice always sends at most n — 1 bits. This means, ranging over 2" possible inputs x that
Alice might have, the possible number of different messages is at most 2"~ !. Therefore, by the

Pigeonhole Principle, there exist at least two inputs 1 and x5 for which Alice sends the same

message z. Suppose x1 and zs differ in the ith coordinate, and y is simple the ith basis vector

(all Os except the ith position). Since Bob only receives z and has y, for both x; and x2, Bob

computes the same answer—thus the protocol is incorrect. O
However, a stronger result for randomized protocols can also be proven.

Theorem 2. Fvery randomized protocol that, for every input (x,y), correctly decides the function
DISJ with probability at least %, uses (n) communication in the worst case.

The probability in the above theorem is over the coin flips performed by the protocol-there is
no randomness in the input, which is “worst-case”. There is nothing special about the constant
2

5 which can be replaced by any constant > %

4 Space Lower Bound for F,

We have see space-efficient streaming algorithms for computing F (distinct items), Fa (Fy is
easy), and heavy-hitters. Here we show that if we have to compute the maximum frequency
within some constant factor of approximation in a single pass, then the space requirement is
Q(n), even using a randomized algorithm.

Theorem 3. FEvery randomized streaming algorithm that, for every data stream of length m,
computes Fyo to within (1 £ .2) factor with probability at least 2/3 uses space Q(min{m,n}).

We will reduce DISJ to streaming computation of F.

Suppose S is a streaming algorithm using space s that computes F,. Given an input (x,y)
of DISJ, Alice sends to S, (i,1) for every x; = 1. S then computes a summary of size s and
sends it to Bob. Bob, seeds S with s, and feeds (i,1) for every y; = 1. At the end if S returns
an answer > 1.6, then Bob declares DISJ = 0, else it declares DISJ = 1.

Note that Fi, = 2 iff the two sets = and y are not disjoint, that is DISJ = 0. In that case S
returns an estimate of F, at least 0.8 x 2 = 1.6.

When DISJ =1, Fo =1 (or 0 if x and y are empty), in that case S can return an estimate
at most 1.2.

Therefore, from the hardness of communication complexity of DISJ, we conclude that
computing Fy, in the streaming setting in a single pass requires Q(min{m, n}) space, even using
a randomized protocol.

	Communication Complexity
	Connection to Streaming Algorithm
	The Disjointness Problem
	Space Lower Bound for F

