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Complexity Model for MapReduce:MRC i

I Input: finite sequence of pairs: (ki , vi ) : (key , value).

I Total Input length=
∑

i ki + vi = n

I The algorithm executes a sequence of map and reduce tasks
(µ1, ρ1, µ2, ρ2, ..., µR , ρR)



Complexity Model for MapReduce:MRC i

I Input: finite sequence of pairs: (ki , vi ) : (key , value).

I Total Input length=
∑

i ki + vi = n

I The algorithm executes a sequence of map and reduce tasks
(µ1, ρ1, µ2, ρ2, ..., µR , ρR)



Complexity Model for MapReduce:MRC i

I Input: finite sequence of pairs: (ki , vi ) : (key , value).

I Total Input length=
∑

i ki + vi = n

I The algorithm executes a sequence of map and reduce tasks
(µ1, ρ1, µ2, ρ2, ..., µR , ρR)



Complexity Model for MapReduce:MRC i

Consider an ε > 0.

I Each map and reduce task requires n1−ε space

I Thus the space available in each machine is sublinear in input
size.

I Total number of machines used is sublinear as well, n1−ε

I The number of rounds R = O((log n)i )
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Complexity Model for MapReduce

I Therefore MRC0 is the class of problems that requires only
constant number of rounds with sublinear amount of memory
in each machine, and sublinear number of machines
altogether.

I There are other classes defined such as MR model, where
more explicit time+communication complexity of a problem is
accounted for.



Complexity Model for MapReduce

I Therefore MRC0 is the class of problems that requires only
constant number of rounds with sublinear amount of memory
in each machine, and sublinear number of machines
altogether.

I There are other classes defined such as MR model, where
more explicit time+communication complexity of a problem is
accounted for.



Minimum Spanning Tree (MST) in MapReduce

I Given a graph G = (V ,E ) on |V | = N vertices and
|E | = M ≥ N1+c edges for some constant c > 0 (n still
denotes the length of the input and not the number of
vertices)

I Compute Minimum Spanning Tree of the graph.



Minimum Spanning Tree (MST) in MapReduce

I Fix a number k

I Randomly partition the set of vertices into k equally sized
subsets, V = V1 ∪ V2 ∪ ... ∪ Vk , with Vi ∩ Vj = φ for i 6= j
and |Vi | = N/k for all i .

I For every pair {i , j}, let Ei ,j ⊆ E be the set of edges induced
by the vertex set Vi ∪ Vj .

Ei ,j = {(u, v) ∈ E | u, v ∈ Vi ∪ Vj}

I Denote the resulting subgraph by Gi ,j = (Vi ∪ Vj ,Ei ,j).
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I Place each Gi ,j in a single machine

I Compute MST Mi ,j of Gi ,j

I Let H = (V ,
⋃

i ,j Mi ,j)

I Compute MST of H in a single machine
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Minimum Spanning Tree (MST) in MapReduce

Theorem
The algorithm computes MST correctly.

I If an edge e is discarded, that is e ∈ E (G ) but e /∈ E (H):
show that e is not part of a MST.

I Every edge is present in at least one Gi ,j

I If an edge does not appear in Mi ,j , then there exists a cycle in
Gi ,j such that e is the heaviest weight edge in that cycle. This
implies e cannot be part of the MST of G .
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Minimum Spanning Tree (MST) in MapReduce

Lemma
Let k = Nc/2 then with high probability the size of every Ei ,j is
Õ(N1+c/2).

I With high probability each part has Õ(N1+c/2) edges.
Therefore, the total input size to any reducer is O(n1−ε).



Minimum Spanning Tree (MST) in MapReduce

I There are Nc total parts, each producing a spanning tree with
2N/k − 1 = O(N1−c/2) edges.

I Thus the size of H is bounded by Õ(N1+c/2) = O(n1−ε),
again small enough to fit into the memory of a single machine.



Minimum Spanning Tree (MST) in MapReduce

Lemma
Let k = Nc/2 then with high probability the size of every Ei ,j is
Õ(N1+c/2).

I |Ei ,j | ≤
∑

v∈Vi
deg(v) +

∑
v∈Vj

deg(v).

I Let Wi = {v ∈ V : 2i−1 < deg(v) ≤ 2i}. Hence W1 is the set
of vertices with degree at most 2, W2 is the set of vertices
with degrees 3 and 4, and so on.

I There are logN total groups.
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Lemma
Let k = Nc/2 then with high probability the size of every Ei ,j is
Õ(N1+c/2).

I How many vertices from Wi are mapped to Vj?

I If |Wi | < 2Nc/2 logN then∑
v∈Wi

deg(v) ≤ 2N1+c/2 logN = Õ(N1+c/2).

I If the group is large, using concentration inequality, we can
show the number of vertices mapped from any particular
group to Vj is small.

I Overall, the total degree in any part remains bounded by
Õ(N1+c/2)
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I If the group is large, using concentration inequality, we can
show the number of vertices mapped from any particular
group to Vj is small.

I Overall, the total degree in any part remains bounded by
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I If the group is large, using concentration inequality, we can
show the number of vertices mapped from any particular
group to Vj is small.

I Overall, the total degree in any part remains bounded by
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Computing Dense Subgraph in MapReduce

Given an undirected graph G = (V ,E ), compute a subset of nodes

S ⊆ V such that |E(S)|
|V (S)| is maximized.

I Community Mining

I Computational Biology

I Link Spam Detection

I Efficient Indexing for Reachability Queries



Computing Dense Subgraph in Streaming Setting

I We will show an algorithm in that computes the dense
subgraph in multiple passes, but in a single machine, and use
O(n log n) memory at any pass.

I Exercise convert the algorithm into MapReduce framework.
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Computing Dense Subgraph in Streaming Setting

I Let ε > 0 be a parameter.

I We start with the given graph G , compute the current density
ρ(G ) and remove all nodes whose degree is less than
(2 + 2ε)ρ(G ).

I If the remaining graph is nonempty, recurse on the remaining
graph.

I Return the graph from the round which has highest density.



Computing Dense Subgraph in Streaming Setting

Lemma
Algorithm obtain s (2 + 2ε)-approximation to the densest subgraph
problem.

I Consider the round in which a vertex from the optimum
subgraph S∗ is removed for the first time.

I Consider a i ∈ S∗ that is removed.

I We have

ρ(S∗) ≤ degS∗(i) ≤ degS(i) ≤ (2 + 2ε)ρ(S)



Computing Dense Subgraph in Streaming Setting

Lemma
Algorithm terminates in log1+ε(n) rounds, n = |V |.

I Exercise: show that after each round, the number of vertices
reduce by a factor of 1

(1+ε) .

I Exercise: show how to convert the algorithm into a MRC1
algorithm.
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