

MapReduce Algorithms

Barna Saha

March 28, 2016

Complexity Model for MapReduce

Minimum Spanning Tree in MapReduce

Computing Dense Subgraph in MapReduce

Complexity Model for MapReduce: \mathcal{MRC}^i

- ▶ Input: finite sequence of pairs: $(k_i, v_i) : (\text{key}, \text{value})$.

Complexity Model for MapReduce: \mathcal{MRC}^i

- ▶ Input: finite sequence of pairs: $(k_i, v_i) : (\text{key}, \text{value})$.
- ▶ Total Input length = $\sum_i k_i + v_i = n$

Complexity Model for MapReduce: \mathcal{MRC}^i

- ▶ Input: finite sequence of pairs: $(k_i, v_i) : (\text{key}, \text{value})$.
- ▶ Total Input length = $\sum_i k_i + v_i = n$
- ▶ The algorithm executes a sequence of map and reduce tasks $(\mu_1, \rho_1, \mu_2, \rho_2, \dots, \mu_R, \rho_R)$

Complexity Model for MapReduce: \mathcal{MRC}^i

Consider an $\epsilon > 0$.

- ▶ Each map and reduce task requires $n^{1-\epsilon}$ space

Complexity Model for MapReduce: \mathcal{MRC}^i

Consider an $\epsilon > 0$.

- ▶ Each map and reduce task requires $n^{1-\epsilon}$ space
- ▶ Thus the space available in each machine is sublinear in input size.

Complexity Model for MapReduce: \mathcal{MRC}^i

Consider an $\epsilon > 0$.

- ▶ Each map and reduce task requires $n^{1-\epsilon}$ space
- ▶ Thus the space available in each machine is sublinear in input size.
- ▶ Total number of machines used is sublinear as well, $n^{1-\epsilon}$

Complexity Model for MapReduce: \mathcal{MRC}^i

Consider an $\epsilon > 0$.

- ▶ Each map and reduce task requires $n^{1-\epsilon}$ space
- ▶ Thus the space available in each machine is sublinear in input size.
- ▶ Total number of machines used is sublinear as well, $n^{1-\epsilon}$
- ▶ The number of rounds $R = O((\log n)^i)$

Complexity Model for MapReduce

- ▶ Therefore \mathcal{MRC}^0 is the class of problems that requires only constant number of rounds with sublinear amount of memory in each machine, and sublinear number of machines altogether.

Complexity Model for MapReduce

- ▶ Therefore \mathcal{MRC}^0 is the class of problems that requires only constant number of rounds with sublinear amount of memory in each machine, and sublinear number of machines altogether.
- ▶ There are other classes defined such as \mathcal{MR} model, where more explicit time+communication complexity of a problem is accounted for.

Minimum Spanning Tree (MST) in MapReduce

- ▶ Given a graph $G = (V, E)$ on $|V| = N$ vertices and $|E| = M \geq N^{1+c}$ edges for some constant $c > 0$ (n still denotes the length of the input and not the number of vertices)
- ▶ Compute Minimum Spanning Tree of the graph.

Minimum Spanning Tree (MST) in MapReduce

- ▶ Fix a number k

Minimum Spanning Tree (MST) in MapReduce

- ▶ Fix a number k
- ▶ Randomly partition the set of vertices into k equally sized subsets, $V = V_1 \cup V_2 \cup \dots \cup V_k$, with $V_i \cap V_j = \emptyset$ for $i \neq j$ and $|V_i| = N/k$ for all i .

Minimum Spanning Tree (MST) in MapReduce

- ▶ Fix a number k
- ▶ Randomly partition the set of vertices into k equally sized subsets, $V = V_1 \cup V_2 \cup \dots \cup V_k$, with $V_i \cap V_j = \emptyset$ for $i \neq j$ and $|V_i| = N/k$ for all i .
- ▶ For every pair $\{i, j\}$, let $E_{i,j} \subseteq E$ be the set of edges induced by the vertex set $V_i \cup V_j$.

$$E_{i,j} = \{(u, v) \in E \mid u, v \in V_i \cup V_j\}$$

Minimum Spanning Tree (MST) in MapReduce

- ▶ Fix a number k
- ▶ Randomly partition the set of vertices into k equally sized subsets, $V = V_1 \cup V_2 \cup \dots \cup V_k$, with $V_i \cap V_j = \emptyset$ for $i \neq j$ and $|V_i| = N/k$ for all i .
- ▶ For every pair $\{i, j\}$, let $E_{i,j} \subseteq E$ be the set of edges induced by the vertex set $V_i \cup V_j$.

$$E_{i,j} = \{(u, v) \in E \mid u, v \in V_i \cup V_j\}$$

- ▶ Denote the resulting subgraph by $G_{i,j} = (V_i \cup V_j, E_{i,j})$.

Minimum Spanning Tree (MST) in MapReduce

- ▶ Place each $G_{i,j}$ in a single machine

Minimum Spanning Tree (MST) in MapReduce

- ▶ Place each $G_{i,j}$ in a single machine
- ▶ Compute MST $M_{i,j}$ of $G_{i,j}$

Minimum Spanning Tree (MST) in MapReduce

- ▶ Place each $G_{i,j}$ in a single machine
- ▶ Compute MST $M_{i,j}$ of $G_{i,j}$
- ▶ Let $H = (V, \bigcup_{i,j} M_{i,j})$

Minimum Spanning Tree (MST) in MapReduce

- ▶ Place each $G_{i,j}$ in a single machine
- ▶ Compute MST $M_{i,j}$ of $G_{i,j}$
- ▶ Let $H = (V, \bigcup_{i,j} M_{i,j})$
- ▶ Compute MST of H in a single machine

Minimum Spanning Tree (MST) in MapReduce

Theorem

The algorithm computes MST correctly.

- ▶ If an edge e is discarded, that is $e \in E(G)$ but $e \notin E(H)$: show that e is not part of a MST.

Minimum Spanning Tree (MST) in MapReduce

Theorem

The algorithm computes MST correctly.

- ▶ If an edge e is discarded, that is $e \in E(G)$ but $e \notin E(H)$: show that e is not part of a MST.
- ▶ Every edge is present in at least one $G_{i,j}$
- ▶ If an edge does not appear in $M_{i,j}$, then there exists a cycle in $G_{i,j}$ such that e is the heaviest weight edge in that cycle. This implies e cannot be part of the MST of G .

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- With high probability each part has $\tilde{O}(N^{1+c/2})$ edges.
Therefore, the total input size to any reducer is $O(n^{1-\epsilon})$.

Minimum Spanning Tree (MST) in MapReduce

- ▶ There are N^c total parts, each producing a spanning tree with $2N/k - 1 = O(N^{1-c/2})$ edges.
- ▶ Thus the size of H is bounded by $\tilde{O}(N^{1+c/2}) = O(n^{1-\epsilon})$, again small enough to fit into the memory of a single machine.

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- ▶ $|E_{i,j}| \leq \sum_{v \in V_i} \deg(v) + \sum_{v \in V_j} \deg(v)$.

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- ▶ $|E_{i,j}| \leq \sum_{v \in V_i} \deg(v) + \sum_{v \in V_j} \deg(v)$.
- ▶ Let $W_i = \{v \in V : 2^{i-1} < \deg(v) \leq 2^i\}$. Hence W_1 is the set of vertices with degree at most 2, W_2 is the set of vertices with degrees 3 and 4, and so on.

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- ▶ $|E_{i,j}| \leq \sum_{v \in V_i} \deg(v) + \sum_{v \in V_j} \deg(v)$.
- ▶ Let $W_i = \{v \in V : 2^{i-1} < \deg(v) \leq 2^i\}$. Hence W_1 is the set of vertices with degree at most 2, W_2 is the set of vertices with degrees 3 and 4, and so on.
- ▶ There are $\log N$ total groups.

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- ▶ How many vertices from W_i are mapped to V_j ?

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- ▶ How many vertices from W_i are mapped to V_j ?
- ▶ If $|W_i| < 2N^{c/2} \log N$ then $\sum_{v \in W_i} \deg(v) \leq 2N^{1+c/2} \log N = \tilde{O}(N^{1+c/2})$.

Minimum Spanning Tree (MST) in MapReduce

Lemma

Let $k = N^{c/2}$ then with high probability the size of every $E_{i,j}$ is $\tilde{O}(N^{1+c/2})$.

- ▶ How many vertices from W_i are mapped to V_j ?
- ▶ If $|W_i| < 2N^{c/2} \log N$ then $\sum_{v \in W_i} \deg(v) \leq 2N^{1+c/2} \log N = \tilde{O}(N^{1+c/2})$.
- ▶ If the group is large, using concentration inequality, we can show the number of vertices mapped from any particular group to V_j is small.
- ▶ Overall, the total degree in any part remains bounded by $\tilde{O}(N^{1+c/2})$

Computing Dense Subgraph in MapReduce

Given an undirected graph $G = (V, E)$, compute a subset of nodes $S \subseteq V$ such that $\frac{|E(S)|}{|V(S)|}$ is maximized.

- ▶ Community Mining
- ▶ Computational Biology
- ▶ Link Spam Detection
- ▶ Efficient Indexing for Reachability Queries

Computing Dense Subgraph in Streaming Setting

- ▶ We will show an algorithm in that computes the dense subgraph in multiple passes, but in a single machine, and use $O(n \log n)$ memory at any pass.

Computing Dense Subgraph in Streaming Setting

- ▶ We will show an algorithm in that computes the dense subgraph in multiple passes, but in a single machine, and use $O(n \log n)$ memory at any pass.
- ▶ Exercise convert the algorithm into MapReduce framework.

Computing Dense Subgraph in Streaming Setting

- ▶ Let $\epsilon > 0$ be a parameter.
- ▶ We start with the given graph G , compute the current density $\rho(G)$ and remove all nodes whose degree is less than $(2 + 2\epsilon)\rho(G)$.
- ▶ If the remaining graph is nonempty, recurse on the remaining graph.
- ▶ Return the graph from the round which has highest density.

Computing Dense Subgraph in Streaming Setting

Lemma

Algorithm obtain a $(2 + 2\epsilon)$ -approximation to the densest subgraph problem.

- ▶ Consider the round in which a vertex from the optimum subgraph S^* is removed for the first time.
- ▶ Consider a $i \in S^*$ that is removed.
- ▶ We have

$$\rho(S^*) \leq \deg_{S^*}(i) \leq \deg_S(i) \leq (2 + 2\epsilon)\rho(S)$$

Computing Dense Subgraph in Streaming Setting

Lemma

Algorithm terminates in $\log_{1+\epsilon}(n)$ rounds, $n = |V|$.

- ▶ Exercise: show that after each round, the number of vertices reduce by a factor of $\frac{1}{(1+\epsilon)}$.
- ▶ Exercise: show how to convert the algorithm into a \mathcal{MRC}^1 algorithm.