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» Input: finite sequence of pairs: (k;j, v;) : (key, value).

» Total Input length= )" ki +v; =n

» The algorithm executes a sequence of map and reduce tasks
(115 1, 2, P2, s R, PR)
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Complexity Model for MapReduce: MRC'

Consider an € > 0.

» Each map and reduce task requires n'—¢

space
» Thus the space available in each machine is sublinear in input
size.

» Total number of machines used is sublinear as well, n1—¢

» The number of rounds R = O((log n)")
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Complexity Model for MapReduce

» Therefore MRCP is the class of problems that requires only
constant number of rounds with sublinear amount of memory
in each machine, and sublinear number of machines
altogether.

» There are other classes defined such as MR model, where
more explicit time+communication complexity of a problem is
accounted for.



Minimum Spanning Tree (MST) in MapReduce

» Given a graph G = (V,E) on |V| = N vertices and
|E| = M > N'*¢ edges for some constant ¢ > 0 (n still
denotes the length of the input and not the number of
vertices)

» Compute Minimum Spanning Tree of the graph.
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Minimum Spanning Tree (MST) in MapReduce

» Fix a number k

» Randomly partition the set of vertices into k equally sized
subsets, V = Vi U Vo U...U V, with ViNV; = ¢ for i # j
and |V;| = N/k for all i.

» For every pair {i,j}, let E; j C E be the set of edges induced
by the vertex set V; U V.

Eij={(u,v)€E|uveViuV}

» Denote the resulting subgraph by G;; = (V; U V;, E; ;).
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Minimum Spanning Tree (MST) in MapReduce

v

Place each G;; in a single machine
Compute MST M;; of G;

Let H = (V,U;; Mij)

Compute MST of H in a single machine

v

v

v



Minimum Spanning Tree (MST) in MapReduce

Theorem
The algorithm computes MST correctly.

» If an edge e is discarded, that is e € E(G) but e ¢ E(H):
show that e is not part of a MST.
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Theorem
The algorithm computes MST correctly.

» If an edge e is discarded, that is e € E(G) but e ¢ E(H):
show that e is not part of a MST.
» Every edge is present in at least one G;

» If an edge does not appear in M; ;, then there exists a cycle in
G;j such that e is the heaviest weight edge in that cycle. This
implies e cannot be part of the MST of G.



Minimum Spanning Tree (MST) in MapReduce

Lemma
Let k = N</2 then with high probability the size of every Eijis
é(N1+c/2)_

» With high probability each part has O(N'*</2) edges.
Therefore, the total input size to any reducer is O(n!~¢).



Minimum Spanning Tree (MST) in MapReduce

» There are N€ total parts, each producing a spanning tree with
2N/k —1 = O(N*~</?) edges.

» Thus the size of H is bounded by O(N't</2) = O(n'~¢),
again small enough to fit into the memory of a single machine.
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Lemma
Let k = N</2 then with high probability the size of every Eijis

é(N1+c/2)_

> |Eij| < Zve\/,- deg(v) + Zvevj deg(v).

» Let W, = {v e V:271 < deg(v) <2'}. Hence W is the set
of vertices with degree at most 2, W5 is the set of vertices
with degrees 3 and 4, and so on.

» There are log N total groups.
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Minimum Spanning Tree (MST) in MapReduce

Lemma
Let k = N</2 then with high probability the size of every Eijis
O(N*+e/2).

» How many vertices from W; are mapped to V;?

> If |W;| < 2N</2log N then
> vew, deg(v) < 2NT</2log N = O(N*F</2),

» If the group is large, using concentration inequality, we can
show the number of vertices mapped from any particular
group to Vj is small.

» Overall, the total degree in any part remains bounded by
6(N1+c/2)



Computing Dense Subgraph in MapReduce

Given an undirected graph G = (V, E), compute a subset of nodes

S C V such that ||5E§))“ is maximized.

» Community Mining

» Computational Biology
» Link Spam Detection
» Efficient Indexing for Reachability Queries
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» We will show an algorithm in that computes the dense
subgraph in multiple passes, but in a single machine, and use
O(nlog n) memory at any pass.
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» We will show an algorithm in that computes the dense
subgraph in multiple passes, but in a single machine, and use
O(nlog n) memory at any pass.

» Exercise convert the algorithm into MapReduce framework.



Computing Dense Subgraph in Streaming Setting

v

Let € > 0 be a parameter.

We start with the given graph G, compute the current density
p(G) and remove all nodes whose degree is less than

(24 2€)p(G).

If the remaining graph is nonempty, recurse on the remaining
graph.

Return the graph from the round which has highest density.

v

v

v



Computing Dense Subgraph in Streaming Setting

Lemma
Algorithm obtain s (2 + 2¢)-approximation to the densest subgraph

problem.

» Consider the round in which a vertex from the optimum
subgraph S* is removed for the first time.
» Consider a i € §* that is removed.

» We have

p(S*) < degs-(i) < degs(i) < (2 + 2¢)p(S)



Computing Dense Subgraph in Streaming Setting

Lemma
Algorithm terminates in log; . (n) rounds, n = |V/|.

» Exercise: show that after each round, the number of vertices

reduce by a factor of (I—}K)

» Exercise: show how to convert the algorithm into a MRC?
algorithm.
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