
Notes on MapReduce Algorithms

Barna Saha

1 Finding Minimum Spanning Tree of a Dense Graph in
MapReduce

We are given a graph G = (V,E) on |V | = N vertices and |E| = m ≥ N1+c edges for some
constant c > 0. Our goal is to compute the minimum spanning tree of the graph.

Algorithm 1 MST computation in MapReduce

Set k = N
c
2 .

Partition V into k parts of equal size: V1, V2,, Vk with Vi ∩ Vj = φ for i 6= j and |Vi| = N
k

for all i.
. Let Ei,j ⊆ E be the set of edges induced by the vertex set Vi ∪ Vj , that is

Ei,j = {(u, v) ∈ E | u, v ∈ Vi ∪ Vj}.
Distribute Gi,j = {Vi ∪ Vj , Ei,j} to each server and compute its minimum spanning tree Mi,j .
Distribute H = ∪Mi,j to a single server and compute the final MST M of H
return M

Theorem 1. The tree M computed by Algorithm 1 is the minimum spanning tree of G.

Proof. The algorithm works by sparsifying the input graph. We now show that H contains all
the relevant edges that may appear in the MST of G.

Consider an edge e = (u, v) that was discarded, that is e ∈ E(G) but e /∈ E(H). Observe
that any edge e = (u, v) is present in at least one subgraph Gi,j . If e /∈Mi,j then by the cycle
property of minimum spanning trees, there must be some cycle C ⊆ Ei,j such that e is the
heaviest edge on the cycle. However, since Ei,j ⊆ E, we have now exhibited a cycle in G such
that e is also the heaviest edge in that cycle in G. Therefore, e cannot be in the MST of G, and
can be safely discarded.

We now look at the memory usage at each machine.

Lemma 1. Let k = N
c
2 , then with high probability the size of every Ei,j is Õ(N1+ c

2).

Proof. We can bound the total number of edges in Ei,j by bounding the total degree of the
vertices in Vi and Vj . Thus,

|Ei,j | ≤
∑
v∈Vi

deg(v) +
∑
v∈Vj

deg(v).

For the purpose of this proof, let us partition the vertices into groups by their degree: let W1
be the set of vertices of degree at most 2, W2 be the set of vertices with degree 3 or 4, and in
general, Wi be the set of vertices with degree in between (2i−1, 2i]. There are logN total groups.

Consider the number of vertices from group Wi that are mapped to Vj . If the group has a
small number of vertices, that is |Wi| < 24N

c
2 logN , then∑

v∈Wi

deg(v) ≤ N ∗ 24N
c
2 logN = Õ(N1+ c

2)

1

If the group is large, define an indicator random variable, Xu
i which is 1 if u ∈Wi belongs to

Vj . Then |Wi ∩ Vj | =
∑
u∈Wi

Xu
i .

E[|Wi ∩ Vj |] = |Wi|
k
≥ 10 logN

Then, by a simple application of Chernoff’s bound,

Prob(|Wi ∩ Vj | >
3
2
|Wi|
k

) ≤ exp(−24 logN
3.22) = 1

n2

Therefore, by union bound

Prob(∃i, |Wi ∩ Vj | >
3
2
|Wi|
k
| |Wi| ≥ 24N

c
2 logN) ≤ logn

n2

Hence, with probability at least 1− logN
N2 :∑

v∈Vj

deg(v) ≤
∑
i

∑
v∈Vj∩Wi

deg(v)

≤ 3
2k
∑
i

∑
v∈Wi

deg(v) = O(N1+ c
2)

Lemma 1 tells us that with high probability each part has Õ(N1+ c
2) edges. Therefore, each

reducer uses sub linear amount of memory space to compute Mi,j .
There are N c total parts, again sublinear in the input size. Each part outputs Mi,j which

contain at most N/k − 1 edges. Hence size of H is at most O(N c N
k) = O(N1+ c

2)

2 An Alternate Algorithm for MST in MapReduce
Recall that we use n to denote the total input size that is n = N +M . Fix some ε > 0.

Algorithm 2 MST computation in MapReduce
if |E| ≤ N1+ε then

Compute T ∗ = MST (E)
return T ∗

end if
l← Θ(|E|

/
N1+ε)

Partition E into E1, E2,...,El where |Ei| ≤ N1+ε using a universal hash function h : E →
{1, 2,, l}.
In parallel: Compute Ti, the minimum spanning tree on G = (V,Ei)

Recursively return the minimum spanning tree on G = (V,E = ∪iTi)

Theorem 2. Algorithm 2 terminates after d cεe iterations, and returns the minimum spanning
tree of the original graph G correctly.

Proof. To show correctness, note that any edge that is not part of the MST on a subgraph of G
is also not part of the MST of G by the cycle property of the minimum spanning trees.

It remains to show that the memory constraints are not violated, and the total number of
rounds is bounded.

2

First, since the partition is done randomly, applying the Chernoff bound, no machine gets
more than 2N1+ε edges with high probability.

Also, note that after first round,

| ∪i Ti| ≤ l(N − 1) = N1+c

N1+ε (N − 1) = N1+c−ε

After the second round,

| ∪i Ti| ≤ l(N − 1) = N1+c−ε

N1+ε (N − 1) = N1+c−2ε

Continuing, after d cεe− iterations, the input is small enough to fit in the memory of a single
machine, and the overall the algorithm terminates in d cεe rounds.

3 Densest Subgraph Computation

Definition. Let G = (V,E) be an undirected graph. Given S ⊆ V , its density ρ(S) is defined
as

ρ(S) = |E(S)|
|S|

The maximum density ρ∗(G) of the graph is then

ρ∗(G) = max
S⊆V
{ρ(S)}.

The above definition can be naturally extended to weighted graphs.

A simple greedy algorithm First, let us look into a very simple greedy algorithm. The
algorithm repeatedly removes the minimum degree vertex among the remaining vertices, and
compute the resultant density. At the end, it returns the density of the subgraph that is
maximum among all the iterations. The algorithm is naturally sequential, as it removes one
vertex at a time based on minimum degree.

This simple algorithm gives a 1
2 -approximation to the densest subgraph as follows. Suppose

the optimum subgraph is SOPT with density ρ∗. Then each vertex in SOPT must have degree at
least ρ∗, otherwise, a simple calculation shows that removing that vertex improves the density
of the subgraph contradicting its optimality.

Consider the first iteration, at which our greedy algorithm tries to remove a vertex from
SOPT . At that time, suppose the vertices still under consideration is T ⊇ SOPT . Every vertex
in T must have degree at least ρ∗. Thus the total number of edges in T is at least ρ∗T/2, or
its density is at least ρ∗/2. Since we return the subgraph with maximum density, the returned
subgraph will have density at least ρ∗

2 .
We now give a simple streaming algorithm, which can also be implemented in the map reduce

framework.

A simple streaming algorithm Starting with the given graph G, the algorithm computes
the current density, ρ(G), and removes all of the nodes (and their incident edges) whose degree
is less than (2 + 2ε)ρ(G) for some fixed ε > 0. If the resulting graph is non-empty, then the
algorithm recurses on the remaining graph, with node set denoted by S, again computing its
density and removing all of the nodes whose degree is lower than the specified threshold; we
denote these nodes by A(S). Then, the node set reduces to S \A(S), and the recursion continues
in the same way.

3

Lemma 2. The algorithm above obtains a 1
2+2ε -approximation to the densest subgraph problem.

Proof. Fix some optimal solution S∗. For each i ∈ S, degS∗(i) ≥ ρ(S∗).
Since

∑
i∈S degS(i) = 2|S|ρ(S), at least one node must be removed in every pass. Now,

consider the first time in the pass when a node i from the optimal solution S∗ is removed. That is
A(S) ∩ S∗ 6= φ. This moment is guaranteed to exist, since S eventually becomes empty. Clearly,
S ⊇ S∗. Let i ∈ A(S) ∩ S∗. We have

ρ(S∗) ≤ degS∗(i)
≤ degS(i) ≤ (2 + 2ε)ρ(S)

This implies ρ(S) ≥ ρ(S∗)
(2+2ε) .

Lemma 3. The algorithm above terminates in O(log (1 + ε)n) passes.

Proof. At each step of the pass, we have

2|E(S)| =
∑

i∈A(S)
degS(i) +

∑
i∈S\A(S)

degS(i)

> 2(1 + ε)(|S| − |A(S)|)ρ(S) = 2(1 + ε)(|S| − |A(S)|) |E(S)|
|S|

Thus,
|A(S)| > ε

1 + ε
|S|.

Or,
|S \A(S)| < 1

1 + ε
|S|

Therefore, the cardinality of the remaining set S decreases by a factor of at least 1/(1 + ε)
during each pass. Hence, the algorithm terminates in O(log(1+ε) n) passes.

4 Estimating Density via Sampling

Let G′ be the graph formed by sampling each edge in G independently with probability p where

p = c

ε2
logN N

M

where c is a large enough constant, 1
2 > ε > 0 is the desired accuracy that we want, N = |V (G)|

and M = |E(G)|. We may assume that M is sufficiently large such that p < 1, otherwise the
entire graph can be kept in a single machine.

Let U be an arbitrary set of k nodes. We use ρG and ρG′ to denote the density of a set of
nodes in G and G′ respectively. We first relate the density of U in G′ with that in G.

Lemma 4. For all U ⊆ V (G),

Pr(ρG′(U) ≥ pOPT
/
10) ≤ N−8 if ρG(U) ≤ OPT

/
60

Pr(|ρG′(U) − pρG(U)| ≥ εpρG(U)) ≤ N−8 if ρG(U) ≥ OPT
/
60

Proof. Let X denote the number of induced edges in U in G′. Then

EX = ρG(U)|U |p

Let OPT denote the optimum density, then OPT ≥ M
N . Hence p ≥ c

ε2 logN
/
OPT .

4

First, let us consider the case when U does not have density close to OPT . Let ρG(U) ≤
OPT/60. Then,

Pr(ρG′(U) ≥ pOPT
/
10)

= Pr(X ≥ p|U |OPT
/
10)

= Pr(X ≥ p|U |ρG(U)(1 +
OPT

/
12

ρG(U)))

≤ exp(−p|U |ρG(U)
OPT

/
12

ρG(U))

= exp(−c|U | logN
12ε2) ≤ 1

N10|U |

On the other hand, if ρG(U) ≥ OPT/60,then

Pr(|ρG′(U)− pρG(U)| ≥ εpρG(U))
= Pr(|X − p|U |ρG(U)| ≥ εp|U |ρG(U))
≤ 2exp(−ε2p|U |ρG(U)|

/
3)

≤ 2exp(−c|U | logN
/
180) ≤ 1

N10|U |

Here we have used c to be a sufficiently large constant.
Now there are at most n|U | subgraphs of size |U |. Hence with probability at least 1− 1

N9|U|

the above concentration result holds for all subgraphs of size |U |.
There are N possible values of |U |. Thus, overall, again by apply a union bound, the above

concentration result holds for all subgraphs of G with probability at least 1− 1
N8

Theorem 3. Let U ′ =argmax U{ρG′(U)}. Then with high probability,

(1− ε)2OPT ≤ ρG(U ′) ≤ OPT

Proof. Consider the subgraph S∗ with optimum density OPT in G. By the above lemma, in G′,
its density is at least (1− ε)pOPT . Thus ρG′(U) ≥ (1− ε)pOPT .

Assuming (1− ε) ≥ 1/10, it must hold that ρG(U) ≥ OPT/60, but then

ρG(U) ≥ (1− ε)1
p
ρG′(U) ≥ (1− ε)2OPT.

5

	Finding Minimum Spanning Tree of a Dense Graph in MapReduce
	An Alternate Algorithm for MST in MapReduce
	Densest Subgraph Computation
	Estimating Density via Sampling

