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Finding Similar Items

I A fundamental data mining task

I I May want to find whether two documents are similar to detect
plagiarism, mirror websites, multiple versions of the same
article.

I While recommending products we want to find users that have
similar buying patterns.

I In Netflix two movies can be deemed similar if they are rated
highly by the same customers.
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Shingling of Documents

I k-Shingles: any substring of length k

I Example

Suppose a document D is abcdabd , then if k = 2, the 2-shingles
are {ab, bc, cd , da, bd}

I Therefore from each document one can get a set of k-shingles
and then apply Jackard Similarity.
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Shingling of Documents

I Choosing the shingle size.
I If we use k = 1, most Web pages will have most of the

common characters, so almost all Web pages will be similar.
I k should be picked large enough such that the probability of

any given shingle appearing in any given document is low.
I For research articles use k = 9. Why?

I Hashing Shingles
I Often singles are hashed to a large hash table, and the bucket

number is used instead of the actual k-shingle. From
{ab, bc, cd , da, bd}, we may get {4, 5, 1, 6, 8}



Challenges of Finding Similar Items

I Number of shingles from a document could be large. If we
have million documents, it may not be possible to store all the
shingle-sets in main memory.

I Comparing pair-wise similarity among documents could be
highly time-consuming.
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Minhash

I When shingles do not fit in the main memory–create a small
signature of each document from the set of shingles.

I Consider a random permutation of all possible shingles
(number of buckets in the hash table), pick the number from
the set that appears first in that permutation.
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Minhash

I Given two sets of shingles S and T ,
Prob(S and T have same minhash ) = Jackard(S ,T )

I Take n such permutations to create a signature of length n.

I Compute the number of positions among n that are the same
for the two documents. If that number is r , then the
estimated Jackard(S ,T ) is r

n .

I Few Questions: When is this a good estimate? How costly is
it to obtain a random permutation? What alternatives are
there for random permutations?
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I Often we want only the most similar pairs or all pairs that are
above some lower bound.

I We need to focus our attention only on pairs that are likely to
be similar without investigating every pair.
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Locality Sensitive Hashing (LSH)

I A hashing mechanism such that items with higher similarity
have higher probability of colliding into the same bucket than
others.

I Use multiple such hash functions, and only compare items
that are hashed in the same bucket.

I False positive: When two “non-similar” items hash to the
same bucket.

I False negative: When two “similar” items do not hash to the
same bucket under any of the chosen hash functions from the
family.
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Locality Sensitive Hashing for MinHash Signatures

I Signature size n is divided into b buckets of size r each.
n = br .

I Use b different hash functions each operating on a single band
of size r .

I If s is the Jackard Similarity between two documents then

I Probability that the signature agrees completely in a particular
band/bucket=s r

I Probability that the signature does not agree in at least one
position in a band/bucket=1− s r

I Probability that the signature does not agree in at least one
position in all of the b buckets is (1− s r )b.

I Probability that the hash functions will hash the two
documents in the same bucket ≥ 1− (1− s r )b.
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Locality Sensitive Hashing for MinHash Signatures
I How do we select b and r given s?

I Suppose s = ( cb )
1
r , then the probability of becoming a

candidate for comparison is (1− c
b )b ≈ c

e –shows a threshold
behavior.

Jackard	

Prob	of	becoming	a	candidate	
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Applications:MinHash

I Source: Wikipedia
A large scale evaluation has been conducted by Google in
2006 to compare the performance of Minhash and Simhash
algorithms. In 2007 Google reported using Simhash for
duplicate detection for web crawling and using Minhash and
LSH for Google News personalization.

I Description from blogs:
I http://matthewcasperson.blogspot.com/2013/11/

minhash-for-dummies.html
I http://robertheaton.com/2014/05/02/

jaccard-similarity-and-minhash-for-winners/:
matching twitter users

I http://blog.jakemdrew.com/2014/05/08/

practical-applications-of-locality-sensitive-hashing-for-unstructured-data/

I Implementation:
https://github.com/rahularora/MinHash –may have
bugs.

http://matthewcasperson.blogspot.com/2013/11/minhash-for-dummies.html
http://matthewcasperson.blogspot.com/2013/11/minhash-for-dummies.html
http://robertheaton.com/2014/05/02/jaccard-similarity-and-minhash-for-winners/
http://robertheaton.com/2014/05/02/jaccard-similarity-and-minhash-for-winners/
http://blog.jakemdrew.com/2014/05/08/practical-applications-of-locality-sensitive-hashing-for-unstructured-data/
http://blog.jakemdrew.com/2014/05/08/practical-applications-of-locality-sensitive-hashing-for-unstructured-data/
https://github.com/rahularora/MinHash


Applications:LSH

I Near-duplicate detection

I Hierarchical clustering

I Genome-wide association study
I Image similarity identification

I VisualRank

I Gene expression similarity identification[citation needed]

I Audio similarity identification

I Nearest neighbor search

I Audio fingerprint

I Digital video fingerprinting

I Anti-spam detection

I Security and digital forensic applications

Check out: http://www.mit.edu/~andoni/LSH/ and
https://github.com/triplecheck/TLSH

http://www.mit.edu/~andoni/LSH/
https://github.com/triplecheck/TLSH
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