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Frequency Moment

I Computing “moments” involves distribution of frequencies of
different elements in the stream.

I Let fi be the number of occurrences of the ith element for any
i ∈ [1, n], then the kth frequency moment is Fk =

∑
i f

k
i



Frequency Moment

I Computing “moments” involves distribution of frequencies of
different elements in the stream.

I Let fi be the number of occurrences of the ith element for any
i ∈ [1, n], then the kth frequency moment is Fk =

∑
i f

k
i



Frequency Moment

I The 0th moment is the sum of 1 for each fi > 0. Hence it
counts the number of distinct items.

I The 1st moment is the sum of the fi s which must be the
length of the stream. This is easy to calculate.

I The 2nd moment is the sum of the squares of the fi ’s. It is
sometimes called the surprise number as it measures the
unevenness of the distribution of elements.

I Suppose we have a stream of length 100.
I Scenario 1: There are 10 elements each with frequency 10.

F2 = 10 ∗ 102 = 1000
I Scenario 2: There are 10 elements, 1st item has frequency 91,

and rest have each frequency 1. F2 = 912 + 9 ∗ 12 = 8290.
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Computing F2 in Small Space

I Linear Sketching

I Alon-Matias-Szegedy Sampling (read Sec 4.5 Leskovec et al.)



Linear Sketch for F2

I Problem Given a stream A1,A2, ..,Am where elements are
coming from the universe [1, n] estimate F2 =

∑n
i=1 f

2
i in

“small space”.

I Output Return an estimate F̂2 such that

Pr
(
F2(1− ε) ≤ F̂2 ≤ (1 + ε)F2

)
≥ (1− δ)

where ε > 0 and δ > 0 are respectively the error and
confidence parameters.



Linear Sketch for F2
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Sketch	
Frequency	Vector	

Dimension:	k	x	n	

Dimension:	n	x	1	

Dimension:	k	x	1	

To	construct	each	row	pick	a	hash	func<on	h:{1,n}	à{+1,-1}	
	uniformly	at	random	from	a	family	of	4-wise	independent		
universal	hash	family.	z(l,i)=hl(i)	

Pick	k	such	hash	func<ons	independently:	h1,	h2,….,hk	to	construct		
The	k	rows.		

z	



Linear Sketch for F2
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When	the	ith	element	appears,	simply	update	Z1=Z1+	z1(i)	

z	

update	Z2=Z2+	z2(i)	

update	Z3=Z3+	z3(i)	

update	Zk=Zk+	zk(i)	

:	
:	
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Space	Requirement=klog(n)	

EsEmate=(Z12+Z22+….+Zk2)/k	



Estimate:F̂2 = 1
k

∑k
i=1 Z

2
i

I Why is this a good estimate?

I Show E [F̂2] = F2.

I Show Var [F̂2] ≤ 2F 2
2

k .

I Apply Chebyshev.

Prob
(
|F̂2 − F2| > εF2

)
≤ Var(F̂2)

ε2F 2
2

I Take k = 16
ε2

. Prob
(
|F̂2 − F2| > εF2

)
≤ 1

8

I

Prob
(
F2(1− ε) ≤ F̂2 ≤ (1 + ε)F2

)
≥ 7

8
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Expectation of Z 2
s

Zs ∼ Z , s = 1, 2, .., k

I Z =
∑n

i=1 fiz(i), Z 2 =
∑

i ,j∈[1,n] fi fjzizj

I E [Z 2] =
∑

i ,j∈[1,n] E [fi fjzizj ] =
∑

i E [f 2i z
2
i ] =

∑
i f

2
i = F2

since E [zizj ] = 0 if i 6= j and E [z2i ] = 1.

I

E [F̂2] =
1

k

k∑
s=1

E [Z 2
s ] = F2
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Variance of Z 2
s

I Var(Z 2) = E [Z 4]− (E [Z 2])2

I

E [Z 4] =
∑
i

f 4i E [z4i ] +
∑
i ,j :i<j

(
4

2

)
f 2i f

2
j E [z2i z

2
j ]

=
∑
i

f 4i + 6
∑
i ,j :i<j

f 2i f
2
j

since E [zizjzkzl ] = 0 if i < j < k < l or 3 of the terms are
equal.

I

(E [Z 2])2 =

(∑
i

f 2i

)2

=
∑
i

f 4i + 2
∑
i ,j :i<j

f 2i f
2
j

I

Var(Z 2) = 4
∑
i ,j :i<j

f 2i f
2
j ≤ 2F 2

2
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Variance of F̂2

Var(F̂2) = Var(
1

k

k∑
s=1

Z 2
s )

=
1

k2
Var(

k∑
s=1

Z 2
s )) since Var(aX ) = a2Var(X ) for any constant a

=
1

k2

k∑
s=1

Var(Z 2
s ) ≤ 1

k2
2kF 2

2 =
2F 2

2

k



Boosting Confidence by Median

I We have

Prob
(
F2(1− ε) ≤ F̂2 ≤ (1 + ε)F2

)
≥ 7

8

I We want

Prob
(
F2(1− ε) ≤ F̂2 ≤ (1 + ε)F2

)
≥ 1− δ

I Take t independent estimates

H1 = F̂2
1
,H2 = F̂2

2
, ...,Ht = F̂2

t

I Return the median of H1, H2,...,Ht .
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Boosting by Median

I Suppose there is an Algorithm that returns an estimate F̂ of a
true estimate F such that |F̂ − F | is small with probability 7

8 .

I How can we design an algorithm that will return an estimate
G of F such that |G − F | is small with probability 99/100?
(In general 1− δ)

I Run s = 6 log 1
δ independent copies of the Algorithm to obtain

estimates F̂ 1, F̂ 2, ..., F̂ s . Set G = mediansi=1F̂
i .
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Boosting by Median

I What is the probability that the median is a bad estimate?

I Either all b s2c copies with estimate below G are bad or, b s2c
copies with estimate above G are bad. That is there are
3 log 1

δ copies that are at least bad for G to be a bad estimate.

I Define an indicator random variable Xi which is 1 if the ith
estimate F̂i is bad. Then E [Xi ] = 1

8 .

I Then the number of bad estimates is Y =
∑

i Xi . and

E [Y ] =
6 log 1

δ
8 = 3

4 log 1
δ

I Bound

Prob(Y > 3 log
1

δ
)

using Chernoff’s bound.
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Boosting by Median

I Upper Tail version of Chernoff Bound. For ε > 1

Prob(Y > E [Y ](1 + ε)) ≤ e−
E [Y ]ε2

2+ε

.

I

Prob

(
Y > 3 log

1

δ

)
= Prob

(
Y >

3

4
log

1

δ
(1 + 3)

)
≤ e−

3
4(log 1

δ )9 1
5 < δ
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Versions of Chernoff Bound

Reference:
https://www.cs.princeton.edu/courses/archive/fall09/

cos521/Handouts/probabilityandcomputing.pdf

https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf


Frequency Moment

I For k > 2, the best bound known is Õ(n1−
2
k log 1

δ ) barring
poly(1ε ) factor. There is an almost matching lower bound of

Ω(n1−
2
k ).

I For k < 2, the best bound known is Õ( 1
ε2

log 1
δ ).

I The algorithms use clever combination of sketching and
hashing



Sketching as a Versatile Tool

I Estimating entropy, quantiles, heavy hitters, fitting histograms
etc.

I Applications beyond streaming: dimensionality reduction,
nearest neighbors, anomaly detection, statistics over social
network.

I Not only useful for small-space algorithm design, but also for
fast running time, distributed processing etc.



Sketching as a Versatile Tool

Slide	from	Piotr	Indyk’s	course	on	Streaming,	Sketching	and	Compressed	Sensing	



Sliding Window Model

I Only the last W items matter where W is the window size.

I Can you extend Bloom Filter, FM sketch in this setting?

I Can you extend Count-Min sketch or linear sketching
techniques in this setting?
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Decaying Window Model

I No fixed window size, but older items have less importance.

I Can you extend Bloom Filter, FM sketch in this setting?

I Can you extend Count-Min sketch or linear sketching
techniques in this setting?



Decaying Window Model

I No fixed window size, but older items have less importance.

I Can you extend Bloom Filter, FM sketch in this setting?

I Can you extend Count-Min sketch or linear sketching
techniques in this setting?



Decaying Window Model

I No fixed window size, but older items have less importance.

I Can you extend Bloom Filter, FM sketch in this setting?

I Can you extend Count-Min sketch or linear sketching
techniques in this setting?


	Introduction

