Mining Data Streams-Estimating Frequency
Moment

Barna Saha

February 18, 2016



Frequency Moment

» Computing “moments” involves distribution of frequencies of
different elements in the stream.



Frequency Moment

» Computing “moments” involves distribution of frequencies of
different elements in the stream.
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Frequency Moment

» The Oth moment is the sum of 1 for each f; > 0. Hence it
counts the number of distinct items.

» The 1st moment is the sum of the f;s which must be the
length of the stream. This is easy to calculate.

» The 2nd moment is the sum of the squares of the f;’s. It is
sometimes called the surprise number as it measures the
unevenness of the distribution of elements.

» Suppose we have a stream of length 100.

» Scenario 1: There are 10 elements each with frequency 10.
F» =10 % 102 = 1000

» Scenario 2: There are 10 elements, 1st item has frequency 91,
and rest have each frequency 1. f, = 012 + 9% 12 = 8290.



Computing F, in Small Space

» Linear Sketching
» Alon-Matias-Szegedy Sampling (read Sec 4.5 Leskovec et al.)



Linear Sketch for F»

» Problem Given a stream A1, A, .., A, where elements are
coming from the universe [1, n] estimate F, = >_7_, f2in
“small space”.

» Qutput Return an estimate F» such that

Pr(R-0<h<(1+dR)>(1-9)

where € > 0 and & > 0 are respectively the error and
confidence parameters.



Linear Sketch for F,

Sketch
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Dimension: kx n Dimension: kx 1

To construct each row pick a hash function h:{1,n} >{+1,-1}
uniformly at random from a family of 4-wise independent
universal hash family. z(l,i)=h,(i) —

Dimension:n x 1
Pick k such hash functions independently: h, h,,....,h, to construct
The k rows.




Linear Sketch for F
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Linear Sketch for F»
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When the ith element appears, simply update Z,=Z,+ z,(i)

Space Requirement=klog(n) update Z;=Zy+ )

update Z,=Z,+ z,(i)

‘ Estimate=(Z,2+2,%+....+Z,%)/k ‘ update 2.-2.4 21
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Why is this a good estimate?
Show E[F] = Fa.
Show Var[F,] < 2—’?

Apply Chebyshev.
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Why is this a good estimate?
Show E[F] = Fa.
Show Var[F,] < 2—’?

Apply Chebyshev.
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Prob (\ﬁz — Rl > er) <202
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Take k = 8. Prob (\ﬁz — R > er) <



Estimate:f, = L3¢ | 72
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Why is this a good estimate?
Show E[F] = Fa.

Show Var[F,] < 2—’?

v
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» Apply Chebyshev.
. Var(F.
Prob (\F2 — R > er) < %
F2
> Take k = 2. Prob (\ﬁz — R > er) <1

Prob (F2(1 _<h<(1+ e)Fz)

|
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Expectation of Z?2

Zs~Z,s=1,2,..k
> 2= i fi2(D). 20 = Eijen n 6212
> E[2°] =30 jen n Elfifiziz] = 3 Ef?27] = 35, 7 = P

since E[z;zj] =0 if i # j and E[z?] = 1.
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Variance of Z2
> Var(2?) = E[Z%] — (E[2%))?
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Variance of Z2
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Variance of F»

k
A 1
Var(Fp) = Var(z Z Z2)

s=1
1 k
= pVar(Z Z2)) since Var(aX) = a®Var(X) for any constant .
s=1
k
1 1 2FF
=13 > Var(22) < pszg ==2

s=1
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Boosting Confidence by Median

» We have

Prob (F2(1 _<h<(+ e)F2) >

|

» We want

Prob <F2(1 ) <h<1+ e)F2> >1-4

» Take t independent estimates
A1 £ 2 At
H=F H=F ,..H = F



Boosting Confidence by Median

v

We have

Prob (F2(1 _<h<(+ e)F2) >

|

v

We want

Prob <F2(1 ) <h<1+ e)Fz) >1-4

v

Take t independent estimates
Hy = /f21, Hy = /'222, o He =B
Return the median of Hi, Ho,...,H;.

v



Boosting by Median

> Suppose there is an Algorithm that returns an estimate F of a
true estimate F such that |F — F| is small with probability Z.
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G of F such that |G — F| is small with probability 99/100?
(In general 1 — §)



Boosting by Median

> Suppose there is an Algorithm that returns an estimate F of a
true estimate F such that |F — F| is small with probability Z.

» How can we design an algorithm that will return an estimate
G of F such that |G — F| is small with probability 99/100?
(In general 1 — §)

» Runs=6 Iog% independent copies of the Algorithm to obtain
estimates F1, F2, ..., F5. Set G = mediant_,F'.
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6log
E[Y] = 254 =3logt




Boosting by Median

» What is the probability that the median is a bad estimate?

» Either all [ 5] copies with estimate below G are bad or, |5 |

copies with estimate above G are bad. That is there are
3 Iog% copies that are at least bad for G to be a bad estimate.

» Define an indicator random variable X; which is 1 if the jth
estimate F; is bad. Then E[Xj] = %.
» Then the number of bad estimatesis Y =), X;. and
1
E[Y] = 5% = }log}

» Bound

1
Prob(Y > 3log g)

using Chernoff's bound.



Boosting by Median

» Upper Tail version of Chernoff Bound. For e > 1

E[Y]é2
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Boosting by Median

» Upper Tail version of Chernoff Bound. For e > 1

E[Y]é2

Prob(Y > E[Y](1+¢€)) < e 2%

1
Prob <Y > 3log 6) = Prob <Y > %Iog%(l + 3)>

< e—%(log%)Qé )



Versions of Chernoff Bound

Reference:
https://www.cs.princeton.edu/courses/archive/fall09/
cosb21/Handouts/probabilityandcomputing.pdf


https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf

Frequency Moment

» For k > 2, the best bound known is (N)(nlf% Iog%) barring
po/y(%) factor. There is an almost matching lower bound of

Q(n'=%).
» For k < 2, the best bound known is (N)(Ei2 log £).

» The algorithms use clever combination of sketching and
hashing



Sketching as a Versatile Tool

» Estimating entropy, quantiles, heavy hitters, fitting histograms
etc.

» Applications beyond streaming: dimensionality reduction,
nearest neighbors, anomaly detection, statistics over social
network.

» Not only useful for small-space algorithm design, but also for
fast running time, distributed processing etc.



Sketching as a Versatile Tool

A different linear sketch

* Instead of £1, let r; be i.i.d. random variables from N(0,1)

+ Consider
ZZZI I'I XI
+ We still have that E[Z7] = 3, x2=||x||,%, since:
- E[JE[]=0

— E[r?] = variance of r;, i.e., 1
+ As before we maintain Z=[Z, ... Z, ] and define
Y =lZll,>= %; Z#  (so that E[Y]=k][x||,?)
+ We show that there exists C>0 s t. for small enough £=0

Pr{ 1Y - KlIxll,2 |> kl[x]|,?] < exp(-C €2 k)

Slide from Piotr Indyk’s course on Streaming, Sketching and Compressed Sensing
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Sliding Window Model

> Only the last W items matter where W is the window size.
» Can you extend Bloom Filter, FM sketch in this setting?

» Can you extend Count-Min sketch or linear sketching
techniques in this setting?
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Decaying Window Model

» No fixed window size, but older items have less importance.
» Can you extend Bloom Filter, FM sketch in this setting?

» Can you extend Count-Min sketch or linear sketching
techniques in this setting?
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