

Mining Data Streams-Estimating Frequency Moment

Barna Saha

February 18, 2016

Frequency Moment

- ▶ Computing “moments” involves distribution of frequencies of different elements in the stream.

Frequency Moment

- ▶ Computing “moments” involves distribution of frequencies of different elements in the stream.
- ▶ Let f_i be the number of occurrences of the i th element for any $i \in [1, n]$, then the k th frequency moment is $F_k = \sum_i f_i^k$

Frequency Moment

- ▶ The 0th moment is the sum of 1 for each $f_i > 0$. Hence it counts the number of distinct items.

Frequency Moment

- ▶ The 0th moment is the sum of 1 for each $f_i > 0$. Hence it counts the number of distinct items.
- ▶ The 1st moment is the sum of the f_i s which must be the length of the stream. This is easy to calculate.

Frequency Moment

- ▶ The 0th moment is the sum of 1 for each $f_i > 0$. Hence it counts the number of distinct items.
- ▶ The 1st moment is the sum of the f_i 's which must be the length of the stream. This is easy to calculate.
- ▶ The 2nd moment is the sum of the squares of the f_i 's. It is sometimes called the *surprise number* as it measures the unevenness of the distribution of elements.
 - ▶ Suppose we have a stream of length 100.
 - ▶ Scenario 1: There are 10 elements each with frequency 10.
$$F_2 = 10 * 10^2 = 1000$$
 - ▶ Scenario 2: There are 10 elements, 1st item has frequency 91, and rest have each frequency 1. $F_2 = 91^2 + 9 * 1^2 = 8290$.

Computing F_2 in Small Space

- ▶ Linear Sketching
- ▶ Alon-Matias-Szegedy Sampling (read Sec 4.5 Leskovec et al.)

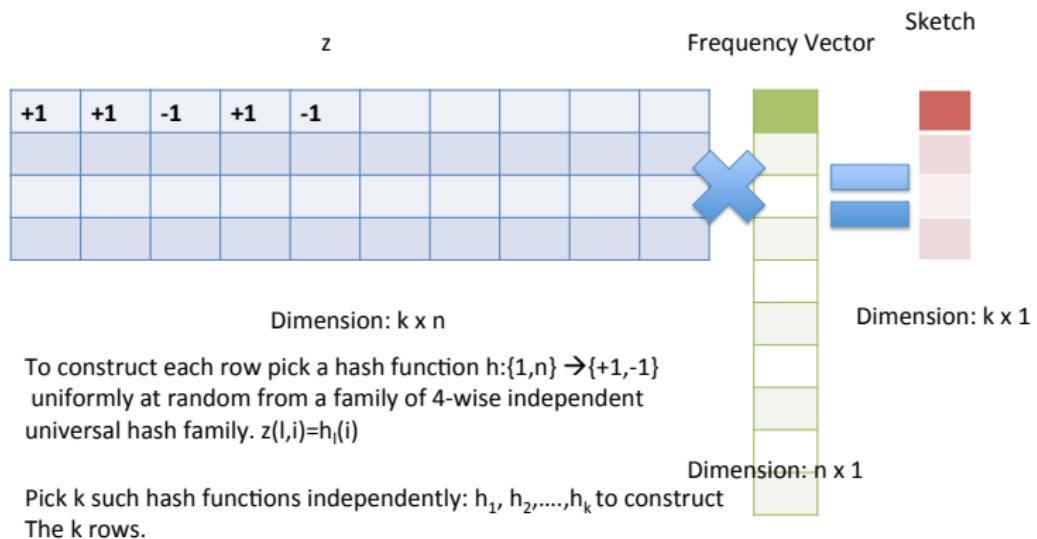
Linear Sketch for F_2

- ▶ **Problem** Given a stream A_1, A_2, \dots, A_m where elements are coming from the universe $[1, n]$ estimate $F_2 = \sum_{i=1}^n f_i^2$ in “small space”.
- ▶ **Output** Return an estimate \hat{F}_2 such that

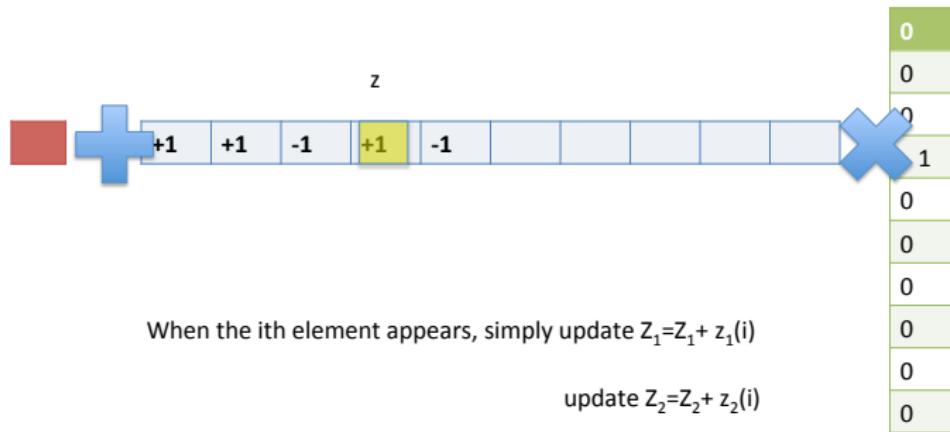
$$\Pr \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq (1 - \delta)$$

where $\epsilon > 0$ and $\delta > 0$ are respectively the error and confidence parameters.

Linear Sketch for F_2



Linear Sketch for F_2



When the i th element appears, simply update $Z_1 = Z_1 + z_1(i)$

update $Z_2 = Z_2 + z_2(i)$

update $Z_3 = Z_3 + z_3(i)$

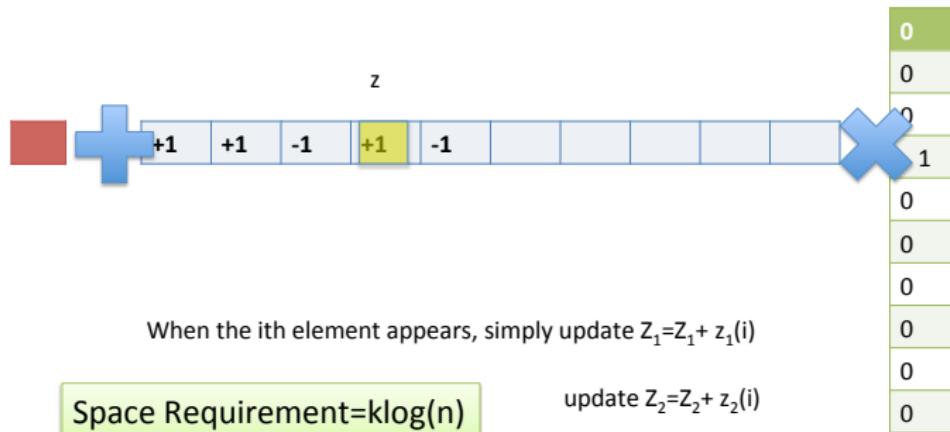
:

:

:

update $Z_k = Z_k + z_k(i)$

Linear Sketch for F_2



update $Z_2 = Z_2 + z_2(i)$

update $Z_3 = Z_3 + z_3(i)$

:

:

:

update $Z_k = Z_k + z_k(i)$

$$\text{Estimate} = (Z_1^2 + Z_2^2 + \dots + Z_k^2) / k$$

Estimate: $\hat{F}_2 = \frac{1}{k} \sum_{i=1}^k Z_i^2$

- ▶ Why is this a good estimate?

Estimate: $\hat{F}_2 = \frac{1}{k} \sum_{i=1}^k Z_i^2$

- ▶ Why is this a good estimate?
- ▶ Show $E[\hat{F}_2] = F_2$.

Estimate: $\hat{F}_2 = \frac{1}{k} \sum_{i=1}^k Z_i^2$

- ▶ Why is this a good estimate?
- ▶ Show $E[\hat{F}_2] = F_2$.
- ▶ Show $Var[\hat{F}_2] \leq \frac{2F_2^2}{k}$.

Estimate: $\hat{F}_2 = \frac{1}{k} \sum_{i=1}^k Z_i^2$

- ▶ Why is this a good estimate?
- ▶ Show $E[\hat{F}_2] = F_2$.
- ▶ Show $Var[\hat{F}_2] \leq \frac{2F_2^2}{k}$.
- ▶ Apply Chebyshev.

$$Prob\left(|\hat{F}_2 - F_2| > \epsilon F_2\right) \leq \frac{Var(\hat{F}_2)}{\epsilon^2 F_2^2}$$

Estimate: $\hat{F}_2 = \frac{1}{k} \sum_{i=1}^k Z_i^2$

- ▶ Why is this a good estimate?
- ▶ Show $E[\hat{F}_2] = F_2$.
- ▶ Show $Var[\hat{F}_2] \leq \frac{2F_2^2}{k}$.
- ▶ Apply Chebyshev.

$$Prob\left(|\hat{F}_2 - F_2| > \epsilon F_2\right) \leq \frac{Var(\hat{F}_2)}{\epsilon^2 F_2^2}$$

- ▶ Take $k = \frac{16}{\epsilon^2}$. $Prob\left(|\hat{F}_2 - F_2| > \epsilon F_2\right) \leq \frac{1}{8}$

Estimate: $\hat{F}_2 = \frac{1}{k} \sum_{i=1}^k Z_i^2$

- ▶ Why is this a good estimate?
- ▶ Show $E[\hat{F}_2] = F_2$.
- ▶ Show $Var[\hat{F}_2] \leq \frac{2F_2^2}{k}$.
- ▶ Apply Chebyshev.

$$Prob\left(|\hat{F}_2 - F_2| > \epsilon F_2\right) \leq \frac{Var(\hat{F}_2)}{\epsilon^2 F_2^2}$$

- ▶ Take $k = \frac{16}{\epsilon^2}$. $Prob\left(|\hat{F}_2 - F_2| > \epsilon F_2\right) \leq \frac{1}{8}$
- ▶

$$Prob\left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2\right) \geq \frac{7}{8}$$

Expectation of Z_s^2

$Z_s \sim Z, s = 1, 2, \dots, k$

- ▶ $Z = \sum_{i=1}^n f_i z(i), Z^2 = \sum_{i,j \in [1,n]} f_i f_j z_i z_j$

Expectation of Z_s^2

$Z_s \sim Z, s = 1, 2, \dots, k$

- ▶ $Z = \sum_{i=1}^n f_i z(i)$, $Z^2 = \sum_{i,j \in [1,n]} f_i f_j z_i z_j$
- ▶ $E[Z^2] = \sum_{i,j \in [1,n]} E[f_i f_j z_i z_j] = \sum_i E[f_i^2 z_i^2] = \sum_i f_i^2 = F_2$

since $E[z_i z_j] = 0$ if $i \neq j$ and $E[z_i^2] = 1$.

Expectation of Z_s^2

$Z_s \sim Z, s = 1, 2, \dots, k$

- ▶ $Z = \sum_{i=1}^n f_i z(i)$, $Z^2 = \sum_{i,j \in [1,n]} f_i f_j z_i z_j$
- ▶ $E[Z^2] = \sum_{i,j \in [1,n]} E[f_i f_j z_i z_j] = \sum_i E[f_i^2 z_i^2] = \sum_i f_i^2 = F_2$

since $E[z_i z_j] = 0$ if $i \neq j$ and $E[z_i^2] = 1$.

- ▶

$$E[\hat{F}_2] = \frac{1}{k} \sum_{s=1}^k E[Z_s^2] = F_2$$

Variance of Z_s^2

- ▶ $Var(Z^2) = E[Z^4] - (E[Z^2])^2$

Variance of Z_s^2

► $Var(Z^2) = E[Z^4] - (E[Z^2])^2$

►

$$\begin{aligned} E[Z^4] &= \sum_i f_i^4 E[z_i^4] + \sum_{i,j:i < j} \binom{4}{2} f_i^2 f_j^2 E[z_i^2 z_j^2] \\ &= \sum_i f_i^4 + 6 \sum_{i,j:i < j} f_i^2 f_j^2 \end{aligned}$$

since $E[z_i z_j z_k z_l] = 0$ if $i < j < k < l$ or 3 of the terms are equal.

Variance of Z_s^2

► $Var(Z^2) = E[Z^4] - (E[Z^2])^2$

►

$$\begin{aligned} E[Z^4] &= \sum_i f_i^4 E[z_i^4] + \sum_{i,j:i < j} \binom{4}{2} f_i^2 f_j^2 E[z_i^2 z_j^2] \\ &= \sum_i f_i^4 + 6 \sum_{i,j:i < j} f_i^2 f_j^2 \end{aligned}$$

since $E[z_i z_j z_k z_l] = 0$ if $i < j < k < l$ or 3 of the terms are equal.

►

$$(E[Z^2])^2 = \left(\sum_i f_i^2 \right)^2 = \sum_i f_i^4 + 2 \sum_{i,j:i < j} f_i^2 f_j^2$$

Variance of Z_s^2

- ▶ $Var(Z^2) = E[Z^4] - (E[Z^2])^2$

- ▶

$$\begin{aligned} E[Z^4] &= \sum_i f_i^4 E[z_i^4] + \sum_{i,j:i < j} \binom{4}{2} f_i^2 f_j^2 E[z_i^2 z_j^2] \\ &= \sum_i f_i^4 + 6 \sum_{i,j:i < j} f_i^2 f_j^2 \end{aligned}$$

since $E[z_i z_j z_k z_l] = 0$ if $i < j < k < l$ or 3 of the terms are equal.

- ▶

$$(E[Z^2])^2 = \left(\sum_i f_i^2 \right)^2 = \sum_i f_i^4 + 2 \sum_{i,j:i < j} f_i^2 f_j^2$$

- ▶

$$Var(Z^2) = 4 \sum_{i,j:i < j} f_i^2 f_j^2 \leq 2 F_2^2$$

Variance of \hat{F}_2

$$\text{Var}(\hat{F}_2) = \text{Var}\left(\frac{1}{k} \sum_{s=1}^k Z_s^2\right)$$

$$= \frac{1}{k^2} \text{Var}\left(\sum_{s=1}^k Z_s^2\right) \text{ since } \text{Var}(aX) = a^2 \text{Var}(X) \text{ for any constant } a$$

$$= \frac{1}{k^2} \sum_{s=1}^k \text{Var}(Z_s^2) \leq \frac{1}{k^2} 2kF_2^2 = \frac{2F_2^2}{k}$$

Boosting Confidence by Median

- ▶ We have

$$\text{Prob} \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq \frac{7}{8}$$

- ▶ We want

$$\text{Prob} \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq 1 - \delta$$

Boosting Confidence by Median

- ▶ We have

$$\text{Prob} \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq \frac{7}{8}$$

- ▶ We want

$$\text{Prob} \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq 1 - \delta$$

- ▶ Take t independent estimates

$$H_1 = \hat{F}_2^1, H_2 = \hat{F}_2^2, \dots, H_t = \hat{F}_2^t$$

Boosting Confidence by Median

- ▶ We have

$$\text{Prob} \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq \frac{7}{8}$$

- ▶ We want

$$\text{Prob} \left(F_2(1 - \epsilon) \leq \hat{F}_2 \leq (1 + \epsilon)F_2 \right) \geq 1 - \delta$$

- ▶ Take t independent estimates

$$H_1 = \hat{F}_2^1, H_2 = \hat{F}_2^2, \dots, H_t = \hat{F}_2^t$$

- ▶ Return the median of H_1, H_2, \dots, H_t .

Boosting by Median

- ▶ Suppose there is an Algorithm that returns an estimate \hat{F} of a true estimate F such that $|\hat{F} - F|$ is small with probability $\frac{7}{8}$.
- ▶ How can we design an algorithm that will return an estimate G of F such that $|G - F|$ is small with probability $99/100$?
(In general $1 - \delta$)

Boosting by Median

- ▶ Suppose there is an Algorithm that returns an estimate \hat{F} of a true estimate F such that $|\hat{F} - F|$ is small with probability $\frac{7}{8}$.
- ▶ How can we design an algorithm that will return an estimate G of F such that $|G - F|$ is small with probability $99/100$? (In general $1 - \delta$)
- ▶ Run $s = 6 \log \frac{1}{\delta}$ independent copies of the Algorithm to obtain estimates $\hat{F}^1, \hat{F}^2, \dots, \hat{F}^s$. Set $G = \text{median}_{i=1}^s \hat{F}^i$.

Boosting by Median

- ▶ What is the probability that the median is a bad estimate?

Boosting by Median

- ▶ What is the probability that the median is a bad estimate?
- ▶ Either all $\lfloor \frac{s}{2} \rfloor$ copies with estimate below G are bad or, $\lfloor \frac{s}{2} \rfloor$ copies with estimate above G are bad. That is there are $3 \log \frac{1}{\delta}$ copies that are at least bad for G to be a bad estimate.

Boosting by Median

- ▶ What is the probability that the median is a bad estimate?
- ▶ Either all $\lfloor \frac{s}{2} \rfloor$ copies with estimate below G are bad or, $\lfloor \frac{s}{2} \rfloor$ copies with estimate above G are bad. That is there are $3 \log \frac{1}{\delta}$ copies that are at least bad for G to be a bad estimate.
- ▶ Define an indicator random variable X_i which is 1 if the i th estimate \hat{F}_i is bad. Then $E[X_i] = \frac{1}{8}$.

Boosting by Median

- ▶ What is the probability that the median is a bad estimate?
- ▶ Either all $\lfloor \frac{s}{2} \rfloor$ copies with estimate below G are bad or, $\lfloor \frac{s}{2} \rfloor$ copies with estimate above G are bad. That is there are $3 \log \frac{1}{\delta}$ copies that are at least bad for G to be a bad estimate.
- ▶ Define an indicator random variable X_i which is 1 if the i th estimate \hat{F}_i is bad. Then $E[X_i] = \frac{1}{8}$.
- ▶ Then the number of bad estimates is $Y = \sum_i X_i$. and $E[Y] = \frac{6 \log \frac{1}{\delta}}{8} = \frac{3}{4} \log \frac{1}{\delta}$

Boosting by Median

- ▶ What is the probability that the median is a bad estimate?
- ▶ Either all $\lfloor \frac{s}{2} \rfloor$ copies with estimate below G are bad or, $\lfloor \frac{s}{2} \rfloor$ copies with estimate above G are bad. That is there are $3 \log \frac{1}{\delta}$ copies that are at least bad for G to be a bad estimate.
- ▶ Define an indicator random variable X_i which is 1 if the i th estimate \hat{F}_i is bad. Then $E[X_i] = \frac{1}{8}$.
- ▶ Then the number of bad estimates is $Y = \sum_i X_i$. and $E[Y] = \frac{6 \log \frac{1}{\delta}}{8} = \frac{3}{4} \log \frac{1}{\delta}$
- ▶ Bound

$$\text{Prob}(Y > 3 \log \frac{1}{\delta})$$

using Chernoff's bound.

Boosting by Median

- ▶ Upper Tail version of Chernoff Bound. For $\epsilon > 1$

$$\text{Prob}(Y > E[Y](1 + \epsilon)) \leq e^{-\frac{E[Y]\epsilon^2}{2+\epsilon}}$$

Boosting by Median

- ▶ Upper Tail version of Chernoff Bound. For $\epsilon > 1$

$$\text{Prob}(Y > E[Y](1 + \epsilon)) \leq e^{-\frac{E[Y]\epsilon^2}{2+\epsilon}}$$

- ▶

$$\begin{aligned} \text{Prob}\left(Y > 3 \log \frac{1}{\delta}\right) &= \text{Prob}\left(Y > \frac{3}{4} \log \frac{1}{\delta}(1 + 3)\right) \\ &\leq e^{-\frac{3}{4} \left(\log \frac{1}{\delta}\right) 9 \frac{1}{5}} < \delta \end{aligned}$$

Versions of Chernoff Bound

Reference:

<https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf>

Frequency Moment

- ▶ For $k > 2$, the best bound known is $\tilde{O}(n^{1-\frac{2}{k}} \log \frac{1}{\delta})$ barring $\text{poly}(\frac{1}{\epsilon})$ factor. There is an almost matching lower bound of $\Omega(n^{1-\frac{2}{k}})$.
- ▶ For $k < 2$, the best bound known is $\tilde{O}(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$.
- ▶ The algorithms use clever combination of sketching and hashing

Sketching as a Versatile Tool

- ▶ Estimating entropy, quantiles, heavy hitters, fitting histograms etc.
- ▶ Applications beyond streaming: dimensionality reduction, nearest neighbors, anomaly detection, statistics over social network.
- ▶ Not only useful for small-space algorithm design, but also for fast running time, distributed processing etc.

A different linear sketch

- Instead of ± 1 , let r_i be i.i.d. random variables from $N(0,1)$
- Consider

$$Z = \sum_i r_i x_i$$

- We still have that $E[Z^2] = \sum_i x_i^2 = \|x\|_2^2$, since:
 - $E[r_i] E[r_j] = 0$
 - $E[r_i^2] = \text{variance of } r_i, \text{ i.e., } 1$
- As before we maintain $Z = [Z_1 \dots Z_k]$ and define
$$Y = \|Z\|_2^2 = \sum_j Z_j^2 \quad (\text{so that } E[Y] = k\|x\|_2^2)$$
- We show that there exists $C > 0$ s.t. for small enough $\epsilon > 0$

$$\Pr[|Y - k\|x\|_2^2| > \epsilon k\|x\|_2^2] \leq \exp(-C \epsilon^2 k)$$

Slide from Piotr Indyk's course on Streaming, Sketching and Compressed Sensing

Sliding Window Model

- ▶ Only the last W items matter where W is the window size.

Sliding Window Model

- ▶ Only the last W items matter where W is the window size.
- ▶ Can you extend Bloom Filter, FM sketch in this setting?

Sliding Window Model

- ▶ Only the last W items matter where W is the window size.
- ▶ Can you extend Bloom Filter, FM sketch in this setting?
- ▶ Can you extend Count-Min sketch or linear sketching techniques in this setting?

Decaying Window Model

- ▶ No fixed window size, but older items have less importance.

Decaying Window Model

- ▶ No fixed window size, but older items have less importance.
- ▶ Can you extend Bloom Filter, FM sketch in this setting?

Decaying Window Model

- ▶ No fixed window size, but older items have less importance.
- ▶ Can you extend Bloom Filter, FM sketch in this setting?
- ▶ Can you extend Count-Min sketch or linear sketching techniques in this setting?