
Mining Data Streams-Approximate Heavy Hitters

Barna Saha

February 9, 2016

Finding Majority

I Input. An array A of length m with the promise that it has a
majority element–a value that is repeated strictly more than
m
2 times.

I Problem. Find the Majority element.

Finding Majority

I Input. An array A of length m with the promise that it has a
majority element–a value that is repeated strictly more than
m
2 times.

I Problem. Find the Majority element in linear time.

I Compute median of A.

Finding Majority

I Input. An array A of length m with the promise that it has a
majority element–a value that is repeated strictly more than
m
2 times.

I Problem. Find the Majority element in linear time.

I Compute median of A.

Finding Majority

I Input. An array A of length m with the promise that it has a
majority element–a value that is repeated strictly more than
m
2 times.

I Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

Finding Majority

I Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

I Algorithm.

1. Set count = 1, current = A(1).
2. For i = 2, 3, ...

2.1 If count == 0, set current = A(i), count = 1,
2.2 If A(i) == current, set count = count + 1
2.3 Else set count = count − 1

3. Return current

I Exercise. Given there exists a majority element, show that the
above algorithm correctly returns the majority.

Finding Majority

I Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

I Algorithm.

1. Set count = 1, current = A(1).
2. For i = 2, 3, ...

2.1 If count == 0, set current = A(i), count = 1,
2.2 If A(i) == current, set count = count + 1
2.3 Else set count = count − 1

3. Return current

I Exercise. Given there exists a majority element, show that the
above algorithm correctly returns the majority.

Heavy Hitter Problem

I Problem. Given an array A of length m, and a parameter k ,
find those values that occur at least m

k times.

I Applications:

1. Computing popular products. A could be all of the page
views of products on amazon.com yesterday. The heavy hitters
correspond to frequently viewed items.

2. Computing frequent search queries. For example, A could
be all of the searches on Google yesterday. The heavy hitters
are then searches made most often.

3. Identifying heavy TCP flows. Here, A is a list of data
packets passing through a network switch, each annotated with
a source-destination pair of IP addresses. The heavy hitters are
then the flows that are sending the most traffic. This is useful
for, among other things, to identify denial-of-service attacks.

4. Identifying volatile stocks. Here, A is a list of stock trades.

Heavy Hitter Problem

I Problem. Given an array A of length m, and a parameter k ,
find those values that occur at least m

k times.
I Applications:

1. Computing popular products. A could be all of the page
views of products on amazon.com yesterday. The heavy hitters
correspond to frequently viewed items.

2. Computing frequent search queries. For example, A could
be all of the searches on Google yesterday. The heavy hitters
are then searches made most often.

3. Identifying heavy TCP flows. Here, A is a list of data
packets passing through a network switch, each annotated with
a source-destination pair of IP addresses. The heavy hitters are
then the flows that are sending the most traffic. This is useful
for, among other things, to identify denial-of-service attacks.

4. Identifying volatile stocks. Here, A is a list of stock trades.

Heavy Hitter Problem

I Can we solve Heavy Hitter Problem in small space? Ideally in
Õ(k) space.

I There is no algorithm that solves the Heavy Hitters problems
in one pass while using a sublinear amount of auxiliary space.

Heavy Hitter Problem

I Can we solve Heavy Hitter Problem in small space? Ideally in
Õ(k) space.

I There is no algorithm that solves the Heavy Hitters problems
in one pass while using a sublinear amount of auxiliary space.

ε-Approximate Heavy Hitter Problem

I Input is an array A of length m with two parameters ε and k.
I Output

1. Every value that occurs at least m
k times in A is in the list.

2. Every value in the list occurs at least m
k − εm times in A

I Why not set ε = 0?

I Space usage grows proportionately with 1
ε .

I If we take ε = 1
2k , space usage is Õ(k), all elements with

frequency m
k is in the list and the elements in the list have

frequency at least m
2k .

ε-Approximate Heavy Hitter Problem

I Input is an array A of length m with two parameters ε and k.
I Output

1. Every value that occurs at least m
k times in A is in the list.

2. Every value in the list occurs at least m
k − εm times in A

I Why not set ε = 0?

I Space usage grows proportionately with 1
ε .

I If we take ε = 1
2k , space usage is Õ(k), all elements with

frequency m
k is in the list and the elements in the list have

frequency at least m
2k .

ε-Approximate Heavy Hitter Problem

I Input is an array A of length m with two parameters ε and k.
I Output

1. Every value that occurs at least m
k times in A is in the list.

2. Every value in the list occurs at least m
k − εm times in A

I Why not set ε = 0?

I Space usage grows proportionately with 1
ε .

I If we take ε = 1
2k , space usage is Õ(k), all elements with

frequency m
k is in the list and the elements in the list have

frequency at least m
2k .

ε-Approximate Heavy Hitter Problem

I Input is an array A of length m with two parameters ε and k.
I Output

1. Every value that occurs at least m
k times in A is in the list.

2. Every value in the list occurs at least m
k − εm times in A

I Why not set ε = 0?

I Space usage grows proportionately with 1
ε .

I If we take ε = 1
2k , space usage is Õ(k), all elements with

frequency m
k is in the list and the elements in the list have

frequency at least m
2k .

Estimating Frequency of Elements

I Input Stream of m elements from a universe [1, n]:
A(1),A(2), ...,A(m).

I Frequency of an element i ∈ [1, n] in the stream is
fi = |t | A(t) = i |.

I Problem
I For i ∈ [n], estimate fi (Point Query)
I For φ ∈ [0, 1], find all i with fi ≥ φm. (Heavy Hitter)

Count-Min Sketch

I Select an ε > 0 and δ > 0: ε denotes the error-parameter, and
δ denotes our confidence.

I Select d = ln 1
δ hash functions h1, h2, ..., hd independently and

randomly from a pair-wise independent hash family. Each
hi : {1, 2, ..., n} → {1, 2, ...,w} where w = e

ε .

I Initialize a table T of dimension d × w all with 0.
I Update: At time t, when A(t) arrives, do the following.

I T (1, h1(A(t))) = T (1, h1(A(t))) + 1
I T (2, h2(A(t))) = T (2, h2(A(t))) + 1
I .
I .
I T (d , hd(A(t))) = T (d , hd(A(t))) + 1

http://research.neustar.biz/tag/count-min-sketch/

http://research.neustar.biz/tag/count-min-sketch/

Count-Min Sketch:Point Query

I Problem For i ∈ [n], estimate fi
I Output An estimate f̂i such that fi ≤ f̂i ≤ fi + ε||f||1

I Algorithm Construct Count-Min sketch. Return

d
min
l=1

T (l , hl(i))

.

Count-Min Sketch:Point Query

I Algorithm Construct Count-Min sketch. Return

d
min
l=1

T (l , hl(i))

.

I Each T (l , hl(i)) ≥ fi . Hence mind
l=1 T (l , hl(i)) ≥ fi .

I Define an indicator random variable X l
j , j = 1, 2, ..n and

l = 1, 2, .., d .

X l
j = 1 if hl(j) = hl(i), else X l

j = 0

I Define Y =
∑j=n

j=1 fjX
l
j . Then T (l , hl(i)) = Y .

Count-Min Sketch:Point Query

E [T (l , hl(i))] = E [Y] =

j=n∑
j=1

E [fjX
l
j] =

j=n∑
j=1

fjE [X l
j]

=

j=n∑
j=1

fjProb(hl(j) = hl(i))

=

j=n∑
j=1

fj
w

(h is picked from a pair-wise family)

=
||f||1
w

Count-Min Sketch:Point Query

Prob (T (l , hl(i))] > ε||f||1) = Prob (T (l , hl(i))] > wεE [T (l , hl(i))])

≤ 1

wε
(By Markov Inequality)

=
1

e
(since w =

e

ε
)

Count-Min Sketch:Point Query

Prob

(
d

min
l=1

T (l , hl(i))] > ε||f||1
)

= Prob

(
d⋂

l=1

T (l , hl(i))] > ε||f||1

)

=
d∏

l=1

Prob (T (l , hl(i))] > ε||f||1) ≤
(

1

e

)ln 1
δ

= δ

I Hence Prob
(
mind

l=1 T (l , hl(i))] ≤ ε||f||1
)
≥ 1− δ.

I Therefore fi ≤ f̂i ≤ fi + ε||f||1 with probability ≥ 1− δ.

I Space= O(wd) = O(1ε ln 1
δ).

Count-Min Sketch:Heavy Hitter
I Set δ′ = δ

n , using space O(1ε ln n
δ) obtain estimates such that

“For All is fi ≤ f̂i ≤ fi + εm.

I Set δ′ = δ
m , using space O(1ε ln m

δ) obtain estimates such that
“For All t = 1, 2, ..,ms the estimated frequency is within the
error-range.

I Use a min-heap to store the heavy-hitters.
1. Keep a count on the total number of elements m arrived so far.
2. When item A(i) arrives, compute its estimated frequency from

the count-min sketch data structure.
3. If the count is above m

k , insert it in the heap with key
Count(A(i)), and delete any previous occurrence of A(i) from
the heap.

4. If any element in the heap has count less than m
k delete it

through operations such as Find-Min and Extract-Min.
5. Assuming no large error happens in the Count-Min sketch, the

heap size is bounded by 2k . Why? Therefore extra work per
item to process the heap is O(log k).

6. At the end, scan the heap, and for every item whose estimated
frequency is ≥ m

k return it as a heavy hitter.

Count-Min Sketch:Heavy Hitter
I Set δ′ = δ

n , using space O(1ε ln n
δ) obtain estimates such that

“For All is fi ≤ f̂i ≤ fi + εm.
I Set δ′ = δ

m , using space O(1ε ln m
δ) obtain estimates such that

“For All t = 1, 2, ..,ms the estimated frequency is within the
error-range.

I Use a min-heap to store the heavy-hitters.
1. Keep a count on the total number of elements m arrived so far.
2. When item A(i) arrives, compute its estimated frequency from

the count-min sketch data structure.
3. If the count is above m

k , insert it in the heap with key
Count(A(i)), and delete any previous occurrence of A(i) from
the heap.

4. If any element in the heap has count less than m
k delete it

through operations such as Find-Min and Extract-Min.
5. Assuming no large error happens in the Count-Min sketch, the

heap size is bounded by 2k . Why? Therefore extra work per
item to process the heap is O(log k).

6. At the end, scan the heap, and for every item whose estimated
frequency is ≥ m

k return it as a heavy hitter.

Miscelleneous

I Implementation: http://www.cs.rutgers.edu/~muthu/

massdal-code-index.html

I Twitter’s algebird and ClearSpring’s stream-lib offer
implementations of Count-Min sketch and various other data
structures applicable for stream mining applications.

I Application: Mostly a list of papers that use CM-sketch
I http://sites.google.com/site/countminsketch/

cm-eclectics
I http://sites.google.com/site/countminsketch/

compressed-sensing
I http:

//sites.google.com/site/countminsketch/databases

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://sites.google.com/site/countminsketch/cm-eclectics
http://sites.google.com/site/countminsketch/cm-eclectics
http://sites.google.com/site/countminsketch/compressed-sensing
http://sites.google.com/site/countminsketch/compressed-sensing
http://sites.google.com/site/countminsketch/databases
http://sites.google.com/site/countminsketch/databases

Boosting by Median

I Suppose there is an Algorithm that returns an estimate F̂ of a
true estimate F such that |F̂ − F | is small with probability 7

8 .

I How can we design an algorithm that will return an estimate
G of F such that |G − F | is small with probability 99/100?
(In general 1− δ)

I Run s = 6 log 1
δ independent copies of the Algorithm to obtain

estimates F̂1, F̂2, ..., F̂s . Set G = mediansi=1F̂i .

Boosting by Median

I Suppose there is an Algorithm that returns an estimate F̂ of a
true estimate F such that |F̂ − F | is small with probability 7

8 .

I How can we design an algorithm that will return an estimate
G of F such that |G − F | is small with probability 99/100?
(In general 1− δ)

I Run s = 6 log 1
δ independent copies of the Algorithm to obtain

estimates F̂1, F̂2, ..., F̂s . Set G = mediansi=1F̂i .

Boosting by Median

I What is the probability that the median is a bad estimate?

I Either all b s2c copies with estimate below G are bad or, b s2c
copies with estimate above G are bad. That is there are
3 log 1

δ copies that are at least bad for G to be a bad estimate.

I Define an indicator random variable Xi which is 1 if the ith
estimate F̂i is bad. Then E [Xi] = 1

8 .

I Then the number of bad estimates is Y =
∑

i Xi . and

E [Y] =
6 log 1

δ
8 = 3

4 log 1
δ

I Bound

Prob(Y > 3 log
1

δ
)

using Chernoff’s bound.

Boosting by Median

I What is the probability that the median is a bad estimate?

I Either all b s2c copies with estimate below G are bad or, b s2c
copies with estimate above G are bad. That is there are
3 log 1

δ copies that are at least bad for G to be a bad estimate.

I Define an indicator random variable Xi which is 1 if the ith
estimate F̂i is bad. Then E [Xi] = 1

8 .

I Then the number of bad estimates is Y =
∑

i Xi . and

E [Y] =
6 log 1

δ
8 = 3

4 log 1
δ

I Bound

Prob(Y > 3 log
1

δ
)

using Chernoff’s bound.

Boosting by Median

I What is the probability that the median is a bad estimate?

I Either all b s2c copies with estimate below G are bad or, b s2c
copies with estimate above G are bad. That is there are
3 log 1

δ copies that are at least bad for G to be a bad estimate.

I Define an indicator random variable Xi which is 1 if the ith
estimate F̂i is bad. Then E [Xi] = 1

8 .

I Then the number of bad estimates is Y =
∑

i Xi . and

E [Y] =
6 log 1

δ
8 = 3

4 log 1
δ

I Bound

Prob(Y > 3 log
1

δ
)

using Chernoff’s bound.

Boosting by Median

I What is the probability that the median is a bad estimate?

I Either all b s2c copies with estimate below G are bad or, b s2c
copies with estimate above G are bad. That is there are
3 log 1

δ copies that are at least bad for G to be a bad estimate.

I Define an indicator random variable Xi which is 1 if the ith
estimate F̂i is bad. Then E [Xi] = 1

8 .

I Then the number of bad estimates is Y =
∑

i Xi . and

E [Y] =
6 log 1

δ
8 = 3

4 log 1
δ

I Bound

Prob(Y > 3 log
1

δ
)

using Chernoff’s bound.

Boosting by Median

I What is the probability that the median is a bad estimate?

I Either all b s2c copies with estimate below G are bad or, b s2c
copies with estimate above G are bad. That is there are
3 log 1

δ copies that are at least bad for G to be a bad estimate.

I Define an indicator random variable Xi which is 1 if the ith
estimate F̂i is bad. Then E [Xi] = 1

8 .

I Then the number of bad estimates is Y =
∑

i Xi . and

E [Y] =
6 log 1

δ
8 = 3

4 log 1
δ

I Bound

Prob(Y > 3 log
1

δ
)

using Chernoff’s bound.

Boosting by Median

I Upper Tail version of Chernoff Bound. For ε > 1

Prob(Y > E [Y](1 + ε)) ≤ e−
E [Y]ε2

2+ε

.

I

Prob

(
Y > 3 log

1

δ

)
= Prob

(
Y >

3

4
log

1

δ
(1 + 3)

)
≤ e−

3
4(log 1

δ)9 1
5 < δ

Boosting by Median

I Upper Tail version of Chernoff Bound. For ε > 1

Prob(Y > E [Y](1 + ε)) ≤ e−
E [Y]ε2

2+ε

.

I

Prob

(
Y > 3 log

1

δ

)
= Prob

(
Y >

3

4
log

1

δ
(1 + 3)

)
≤ e−

3
4(log 1

δ)9 1
5 < δ

Versions of Chernoff Bound

Reference:
https://www.cs.princeton.edu/courses/archive/fall09/

cos521/Handouts/probabilityandcomputing.pdf

https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf

	Introduction

