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Finding Majority

» Input. An array A of length m with the promise that it has a
majority element—a value that is repeated strictly more than
3 times.

» Problem. Find the Majority element.
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» Problem. Find the Majority element in linear time.
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» Problem. Find the Majority element in linear time in a single
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> Algorithm.
1. Set count =1, current = A(1).
2. Fori=2,3,..
2.1 If count == 0, set current = A(i), count =1,

2.2 If A(i) == current, set count = count + 1
2.3 Else set count = count — 1

3. Return current



Finding Majority

» Problem. Find the Majority element in linear time in a single
left to right pass in “constant” space.

> Algorithm.
1. Set count =1, current = A(1).
2. Fori=2,3,..
2.1 If count == 0, set current = A(i), count =1,
2.2 If A(i) == current, set count = count + 1

2.3 Else set count = count — 1
3. Return current
» Exercise. Given there exists a majority element, show that the
above algorithm correctly returns the majority.



Heavy Hitter Problem

» Problem. Given an array A of length m, and a parameter k,
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Heavy Hitter Problem

» Problem. Given an array A of length m, and a parameter k,
find those values that occur at least % times.
» Applications:

1. Computing popular products. A could be all of the page
views of products on amazon.com yesterday. The heavy hitters
correspond to frequently viewed items.

2. Computing frequent search queries. For example, A could
be all of the searches on Google yesterday. The heavy hitters
are then searches made most often.

3. Identifying heavy TCP flows. Here, A is a list of data
packets passing through a network switch, each annotated with
a source-destination pair of IP addresses. The heavy hitters are
then the flows that are sending the most traffic. This is useful
for, among other things, to identify denial-of-service attacks.

4. ldentifying volatile stocks. Here, A is a list of stock trades.



Heavy Hitter Problem

» Can we solve Heavy Hitter Problem in small space? Ideally in
O(k) space.



Heavy Hitter Problem

» Can we solve Heavy Hitter Problem in small space? Ideally in
O(k) space.

» There is no algorithm that solves the Heavy Hitters problems
in one pass while using a sublinear amount of auxiliary space.



e-Approximate Heavy Hitter Problem

» Input is an array A of length m with two parameters € and k.
» Output

1. Every value that occurs at least 7' times in A is in the list.
2. Every value in the list occurs at least 7% — em times in A
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e-Approximate Heavy Hitter Problem

» Input is an array A of length m with two parameters € and k.
» Output
1. Every value that occurs at least 7' times in A is in the list.
2. Every value in the list occurs at least 7% — em times in A
» Why not set e = 07
» Space usage grows proportionately with %
> If we take e = ﬁ space usage is O(k) all elements with

frequency 7 is in the list and the elements in the list have
frequency at least 7.



Estimating Frequency of Elements

> Input Stream of m elements from a universe [1, n]:
A(1),A(2), ..., A(m).

» Frequency of an element i € [1, n] in the stream is
fi=lt[A(t) =il

» Problem

» For i € [n], estimate f; (Point Query)
» For ¢ € [0,1], find all i with f; > ¢m. (Heavy Hitter)



Count-Min Sketch

» Select an € > 0 and J > 0: € denotes the error-parameter, and
0 denotes our confidence.

» Select d = In% hash functions hy, hy, ..., hy independently and
randomly from a pair-wise independent hash family. Each
hi :{1,2,....,n} = {1,2,...,w} where w = £.

> Initialize a table T of dimension d x w all with 0.

» Update: At time t, when A(t) arrives, do the following.

T(L, m(A(t))) = T(L, m(A(t))) +1

T(2, ha(A(t))) = T(2, h2(A(t))) + 1

vV vy vy VvYy

T(d, ha(A(t))) = T(d, ha(A(t))) + 1

http://research.neustar.biz/tag/count-min-sketch/
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Count-Min Sketch:Point Query

» Problem For i € [n], estimate f;
» Output An estimate # such that f; < f; < f; + e||f|]1

» Algorithm Construct Count-Min sketch. Return

d :
min T(1, hi(i))



Count-Min Sketch:Point Query

v

Algorithm Construct Count-Min sketch. Return

d :
min T(1, hy(i))

v

Each T(/, hy(i)) > f.. Hence minc_, T(I, hy(i)) > f..
Define an indicator random variable Xj’, j=1,2,..nand
=1,2,..d.

v

X = 1if hy(j) = hi(i), else X =0

v

Define Y = Zfif fiX/. Then T(I, (i) =Y.



Count-Min Sketch:Point Query

E[T(I,h(i))] = E[Y] = ZE[fX]—ZfE[X]

= Z fiProb(h;(j) = hi(i))

Jj=n

(h is picked from a pair-wise family)
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Count-Min Sketch:Point Query

Prob (T (1, hi(1))] > e[f|lx) = Prob (T (I, hi(i))] > weE[T (I, hi(7))])

< —  (By Markov Inequality)
€

: e
(since w = ;)

m\l—lg —_



Count-Min Sketch:Point Query

Prob (mln T, h())] > erHl)
= Prob <ﬂ T(1, h(i))] > e||f||1>
d In%
~ T Prob (TN > el < (1) =3
I=1
» Hence Prob (minj’z1 T(, h(i)] < ellf]l1) >1-6.

» Therefore f; < f; < f; + €||f||; with probability > 1 — .
» Space= O(wd) = O(%Ini).



Count-Min Sketch:Heavy Hitter

> Set ¢/ = %, using space O(2 In 2) obtain estimates such that
“For All is f; < f; < fi +em.

> Use a min-heap to store the heavy-hitters.

1.
2.

Keep a count on the total number of elements m arrived so far.
When item A(f) arrives, compute its estimated frequency from
the count-min sketch data structure.

If the count is above 7, insert it in the heap with key
Count(A(i)), and delete any previous occurrence of A(i) from
the heap.

m

. If any element in the heap has count less than 7 delete it

through operations such as Find-Min and Extract-Min.

. Assuming no large error happens in the Count-Min sketch, the

heap size is bounded by 2k. Why? Therefore extra work per
item to process the heap is O(log k).

. At the end, scan the heap, and for every item whose estimated

frequency is > % return it as a heavy hitter.



Count-Min Sketch:Heavy Hitter

> Set ¢/ = %, using space O(2 In %) obtain estimates such that
“For All is f; < f; < f; +em.

> Set &' = 2, using space O(%1In ) obtain estimates such that
“For All t =1,2,.., ms the estimated frequency is within the

error-range.
> Use a min-heap to store the heavy-hitters.

1.
2.

Keep a count on the total number of elements m arrived so far.
When item A(f) arrives, compute its estimated frequency from

the count-min sketch data structure.
If the count is above 7, insert it in the heap with key

Count(A(i)), and delete any previous occurrence of A(i) from
the heap.

m

. If any element in the heap has count less than 7 delete it

through operations such as Find-Min and Extract-Min.

. Assuming no large error happens in the Count-Min sketch, the

heap size is bounded by 2k. Why? Therefore extra work per
item to process the heap is O(log k).

. At the end, scan the heap, and for every item whose estimated

frequency is > % return it as a heavy hitter.



Miscelleneous

» Implementation: http://www.cs.rutgers.edu/~muthu/
massdal-code-index.html

» Twitter's algebird and ClearSpring's stream-lib offer
implementations of Count-Min sketch and various other data
structures applicable for stream mining applications.

» Application: Mostly a list of papers that use CM-sketch

» http://sites.google.com/site/countminsketch/
cm-eclectics

» http://sites.google.com/site/countminsketch/
compressed-sensing

» http:
//sites.google.com/site/countminsketch/databases
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Boosting by Median

> Suppose there is an Algorithm that returns an estimate F of a
true estimate F such that |F — F| is small with probability Z.

» How can we design an algorithm that will return an estimate

G of F such that |G — F| is small with probability 99/100?
(In general 1 — §)



Boosting by Median

> Suppose there is an Algorithm that returns an estimate F of a
true estimate F such that |F — F| is small with probability Z.

» How can we design an algorithm that will return an estimate
G of F such that |G — F| is small with probability 99/100?
(In general 1 — §)

» Runs=6 Iog% independent copies of the Algorithm to obtain
estimates F1, Fp, ..., Fs. Set G = median;_, F;.



Boosting by Median

» What is the probability that the median is a bad estimate?
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» What is the probability that the median is a bad estimate?

» Either all [ 5] copies with estimate below G are bad or, |5 |

copies with estimate above G are bad. That is there are
3 Iog% copies that are at least bad for G to be a bad estimate.
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E[Y] = 254 =3logt




Boosting by Median

» What is the probability that the median is a bad estimate?

» Either all [ 5] copies with estimate below G are bad or, |5 |

copies with estimate above G are bad. That is there are
3 Iog% copies that are at least bad for G to be a bad estimate.

» Define an indicator random variable X; which is 1 if the jth
estimate F; is bad. Then E[Xj] = %.
» Then the number of bad estimatesis Y =), X;. and
1
E[Y] = 5% = }log}

» Bound

1
Prob(Y > 3log g)

using Chernoff's bound.



Boosting by Median

» Upper Tail version of Chernoff Bound. For e > 1

E[Y]é2

Prob(Y > E[Y](1+¢€)) < e 2%



Boosting by Median

» Upper Tail version of Chernoff Bound. For e > 1

E[Y]é2

Prob(Y > E[Y](1+¢€)) < e 2%

1
Prob <Y > 3log 6) = Prob <Y > %Iog%(l + 3)>

< e—%(log%)Qé )



Versions of Chernoff Bound

Reference:
https://www.cs.princeton.edu/courses/archive/fall09/
cosb21/Handouts/probabilityandcomputing.pdf
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