Mining Data Streams-Finding Distinct Element

Barna Saha

February 9, 2016

Counting Distinct ltems

Given a stream of elements arriving from a universe, we want to
count the number of distinct elements in the stream, either from
the beginning of the stream, or from some known time in the past.

Let S be a multi-set of N integers. Each integer is in the range
[0, U] where U is some polynomial in N. The distinct element

counting problem finds out exactly how many distinct elements are
there in S.

Motivating Example: Unique Users of a Website

Web sites often gather statistics on how many unique users it has
seen in each given month. The universal set is the set of logins for
that site, and a stream element is generated each time a user logs
in.

» Amazon: user logs in with their unique login name.

» Google: identifies users by IP addresses.

Motivating Example: RFID Counting

Radio-frequency identification (RFID) technology uses RFID tags
and RFID readers (or simply called tags and readers) to monitor
objects in physical world.

Many events (e.g., TechEd and Bonnaroo festival) distribute RFID
wristbands to their visitors. RFID counting helps reveal the
number of people around.

Motivating Example: DNA Motifs

Sequence motifs are short, recurring patterns in DNA that are
presumed to have a biological function.

Number of distinct motifs indicate valuable biological information
about the specific DNA sequence.

Applications to Networks

» How many packet flows between distinct pairs of (source,
destination)?

» How many flows are losing packets (where packets in one side
not equal to packets out)?

» Denial of service attacks signaled by large numbers of requests
from spoofed IPs.

Counting distinct elements provide valuable statistics in these
cases.

A Simple Solution

» Keep an array, a[o0, .., U], initially set to 0.
> Also keep a counter C initialized to 0.

» Every time an item i arrives, look at a[i].
» If it is zero, increment C, and set a[i] =1
» Return C as the number of distinct items
» Time: O(1) per update and per query

» But space is O(U).

The Flajolet-Martin Sketch

» Counting the number of distinct items is easy if the items can
be stored in the main memory.

» Store them in an easily searchable data structure such as a
hash table, or search tree, and while adding an element, check
if it is added for the first time to adjust the counter.

» What happens if we do not have enough memory to store all
the distinct items?—The Flajolet-Martin Sketch.

The Flajolet-Martin Sketch

The basic idea.
» Keep an array a[l.... log U]
» Use a hash function f : {1...U} — {0....log U}
» Compute f(i) for every item in the stream, and set
a[f(n] =1.
» Somehow extract from this the approximate number of
distinct items.
Space requirement=0(log U) = O(log N), assuming hash
functions do not require too much of space.

What kind of hash functions to use?

Universal Hash Function Family
Hash functions are uniform over [M]

Pracnlh(i) = K =
Pracnlh(i) = hi)] <

(2-universal hash family)

A family of hash functions H = {h|h: [U] — [M]} is called a
pairwise independent family of hash functions or strongly
2-universal if for all i # j € [U] and any k, I € [M]

Praeylh(i) = k(W h(j) =] = %

Universal Hash Functions

Construction.
» Let p be a prime in [U,2U]. For any a,b € {0,1,2,....p — 1},
define
> h,p(x) = [(ax + b) mod p]lmod n to obtain a hash function
mapping [U] to [0, ..,n — 1].
» Then the collection of functions # = {h, | a,b € [0, p — 1]}
is strongly 2-universal.

The Flajolet-Martin Sketch

>

We want a strongly 2-universal hash function family mapping
[U] = [[log UT].
Let U=2" —1. So [log U]] = w. Each integer
k € [0,2" — 1] can be represented with w bits. To construct a
hash function f : [U] — [[log U]], we first pick a 2-universal
hash function h: [U] — [U], and then look at the the number
of trailing Os of the outcome of h, to construct the mapping f.
Let z, denote the number of trailing O's in the binary form of
the hash h(k) of k, where h is chosen from a strongly
2-universal hash family mapping from U to U. Then
f(k) = z.

» If w=5, and h(k) = 6 = (00110),, then z, = 1.
FM sketch is simply an integer Z defined as:

Z = max zx
keS

Our estimate is simply

F =27

The Flajolet-Martin Sketch

» Probability that zx > 1 = %
» Probability that zx > 2 = %
> Probability that zx > 3 = %
> Probability that zx > 4 = %

Each item falls in the same cell every time it is encountered, so it
is as if only one of each distinct item arrives.

Suppose you have 32 distinct elements. Then roughly 16 will have
the least significant bit (LSB) as 0. Out of them 8 will have 2
LSBs set to 0, 4 will have 3 LSBs set to 0, 2 will have 4 LSBs set
to 0, and 1 will have 5 LSBs set to 0. Then Z =5, 2 = 32.

The Flajolet-Martin Sketch: Analysis

We will prove

Theorem
For any integer ¢ > 3 the probability that % < F < cF is at least

1-— % where F is the true value of distinct elements and F is the
estimate from FM-sketch.

The Flajolet-Martin Sketch: Analysis

Lemma
For any integer r € [0,w], Pr[z} > r] = 4.

Proof.
There are w bits, among them the least r bits must all be 0. There
are 2"~ " such integers in [0,2" — 1] that have at least r trailing Os.

Therefore,

w—r 1

2
Prizx > r] = S = or

The Flajolet-Martin Sketch: Analysis

Let us fix a r. For each k € S, define:

1, ifz >

0, otherwise

E[xk(r)] = Prob(xk(r) =1) = %

Varlu(1)] = b (] — (EB()? = 5, — 3 = 5 (1-
Define
X = Y xl)
k distinct

We must have X(r) > 1 for r =0,1,2,...,Z. and X(r) = 0 for
r=24+1,...,w-—1

The Flajolet-Martin Sketch: Analysis

Define
X(r)= >

k distinct

We must have X(r) > 1 for r =0,1,2,...,Z. and X(r) = 0 for
r=2Z4+1,...,w-—1
Let

ri = the smallest r such that 2" > cF

F
ro = the largest r such that 2" < —
c

For the algorithm to be successful we want r» < Z < r1, or
X(rp+1)>0and X(rn) =0.

The Flajolet-Martin Sketch: Analysis

We will show

Lemma
Pr[X(rn) > 1] < %

Lemma
PriX(r,+1)=0] < 2
Therefore, we will have

PriX(n) > 1 OR X(rs + 1) = 0] < %

Thus the algorithm is successful with probability at least 1 — %

Markov Inequality

Theorem 3 (Markov Bound).

Proof.

For any positive random variable X, and for any t > 0

pr(x >0 < M &)
= Z:vPr(X:I)
= Zx-Pr(X:a:)+ZI-Pr(X:I)
z<t >t
> 0+t Pr(X =1)
>t
= t-P(X>t)

Chebyshev Inequality

Theorem 4 (Chebyshev Inequality). For any random variable X and for any t > 0

Var(z)

Pr(|X — Ez]| > t) < o

Proof.

Pr(|X — Elz]] > 1)
= Pr(X - Bl 2)
E[(X — E[])*]
12
Var(X)
2

IN

The Flajolet-Martin Sketch: Analysis

Lemma
Pr[X(rn) > 1] < %

Proof.

Pr[X(n) > 1] < E[X(nn)] by Markov Inequality
= Z E[xx(r1)] by linearity of expectation

k distinct

F 1

—on ¢

The Flajolet-Martin Sketch: Analysis

Lemma
PriX(rn+1)=0] < %

Proof.

PriX(ry +1) = 0] < Pr[|X(r2 + 1) — E[X(r2 + 1)| > E[X(r2 + 1)]

_ Var(Zk distinct Xk(rZ + 1))
(Zk distinct E[Xk(r2 + 1)])2
V. 1
_ 2k disinet Vartxi(ra +)l by 2-wise independence
(Ek distinct E[Xk(r2 +)])
F F2 2l 2
< = < -
- 2(r2+1)/22(r2+1) F e

The Chernoff Bound

Theorem 5 (The Chernoff Bound). Let X1, X5...X,, be n independent Bernoulli random variables
with Pr(X; = 1) = p;. Let X =3 X;. Hence,

E[X]=E [Z xi] =Y EBX) =Y Pr(Xi=1) = pi = u(say).

Then the Chernoff Bound says for any € > 0

A

p u
Pr(X > (1+¢ep) < <m) and

A

P <-on < (ige)

When 0 < € < 1 the above expression can be further simplified to

2

Pr(X>(1+6epu) < e 5 and
2
Pr(X < (1-e)p)

—pe
e 2

IA

Hence .
Pr(X — | > ep) < 2675

Java Implementation of FM-Sketch
https:
//github.com/rbhide0/Columbus/blob/master/src/main/
java/rbhide0/streaming/algorithm/FlajoletMartin. java
Results using the above implementation.

» Wikipedia article on "United States Constitution” had 3978
unique words. When run ten times, Flajolet-Martin algorithm
reported values of 4902, 4202, 4202, 4044, 4367, 3602, 4367,
4202, 4202 and 3891 for an average of 4198. As can be seen,
the average is about right, but the deviation is between -400
to 1000.

> Wikipedia article on " George Washington" had 3252 unique
words. When run ten times, the reported values were 4044,
3466, 3466, 3466, 3744, 3209, 3335, 3209, 3891 and 3088, for
an average of 3492,

Play with this implementation, and let me know what you counted!
Reference: http://ravi-bhide.blogspot.com/2011/04/
flajolet-martin-algorithm.html

https://github.com/rbhide0/Columbus/blob/master/src/main/java/rbhide0/streaming/algorithm/FlajoletMartin.java
https://github.com/rbhide0/Columbus/blob/master/src/main/java/rbhide0/streaming/algorithm/FlajoletMartin.java
https://github.com/rbhide0/Columbus/blob/master/src/main/java/rbhide0/streaming/algorithm/FlajoletMartin.java
http://ravi-bhide.blogspot.com/2011/04/flajolet-martin-algorithm.html
http://ravi-bhide.blogspot.com/2011/04/flajolet-martin-algorithm.html

	Introduction

