
6.897: CSCI8980 Algorithmic Techniques for Big Data September 12, 2013

Lecture 2

Dr. Barna Saha Scribe: Haritha Bellam

Overview

Till now we have looked at streaming algorithms which approximately count the number of dis-
tinct items in a stream. In this lecture, we shall look at another fundamental problem of finding
approximate frequency of any item in the stream. A celebrated technique (known as count-min
sketch) from the streaming world shall be presented to answer the approximate frequency and
related queries.

1 Introduction

Consider an n-dimensional vector a = [a1, a2, . . . , an]. Initially all the entries in a are zero, i.e.,
ai = 0. Let X be the stream of m updates, where the tth update is represented as (it, ct). The tth
update implies that ai ←− ai + ct and the rest of the entries are unchanged.

After any number of updates (say t), some of the queries of interest are the following:

1. Point Query: Given i; return an approximation of ai.

2. Range Query: Given l, r; return an approximation of
∑r

i=l ai.

3. Heavy Hitters Query: Given φ ∈ (0, 1); a heavy hitter is an item ai ≥ φ‖a‖1. The goal is to
return all the approximate heavy hitters i s.t. ai ≥ (φ− ε)‖a‖1.

4. Quantile Query: Given φ ∈ (0, 1); return a j s.t. (φ− ε)‖a‖1 ≤
∑j

i=1 ai ≤ (φ+ ε)‖a‖1.

2 Count-Min Sketch

Data Structure: Initialize a two-dimensional array count with width w and depth d. Each entry
in the array is initially zero. Given parameters (ε, δ), set w = d eεe and d = dln 1

δ e. Also, d hash
functions h1, . . . , hd : {1, 2, . . . n} → {1, 2, . . . , w}, are chosen uniformly at random from a pairwise-
independent family.

Handling an Update: When an update (it, ct) arrives, then ct is added to one entry in each row
of the array count. Specifically, ∀1 ≤ j ≤ d, count [j, hj(it)]← count [j, hj(it)] + ct.

Lemma 1. The space used by Count-Min Sketch is O(wd) ≡ O(1ε ln 1
δ) words. Specifically, it uses

an array which takes wd words and d hash functions, each of which can be stored using 2 words.
An update can be handled in O(d) ≡ O(ln 1

δ) time.

1

it +ct

+ct

+ct

+ct

h1

hd

Figure 1: An item i mapped to one cell in each row.

3 Answering Queries

3.1 Point Query

Given i, the answer returned is âi = mindj=1 count [j, hj(i)].

Lemma 2. The time answer the point query is O(ln 1
δ). The estimate âi has the following two

properties:

1. ai ≤ âi.

2. âi ≤ ai + ε‖a‖1 with probability at least 1− δ.

Proof. Consider the jth hash function hj . Consider the array entry count [j, hj(i)] into which any
update to item ai happens. Since we assume that at each update ct ≥ 0, it follows that ai ≤ âi.
Now we want to find the “excess quantity” which has been stored at count [j, hj(i)].

Define an indicator variables Ii,j,k which are 1 if (i 6= k) ∧ (hj(i) = hj(k)), and 0 otherwise. By
pairwise independence of the hash functions, then

E(Ii,j,k) = Pr[hj(i) = hj(k)] ≤ 1/range(hj) =
ε

e

where range(hj) is the range of values the hash function hj can take. Now define the variable Xi,j

(random over the choices of hi) to be Xi,j =
∑n

k=1 Ii,j,kak. (Xi,j is the excess quantity which has
been stored at count [j, hj(i)].) By construction of the data structure, count [j, hj(i)] = ai + Xi,j .
Therefore,

2

E(Xi,j) = E(
n∑
k=1

Ii,j,kak) =
n∑
k=1

E(Ii,j,kak), by linearity of expectation

=

n∑
k=1

akE(Ii,j,k)

≤ ε

e

n∑
k=1

ak

=
ε

e
‖a‖1

Finally we prove that the Pr[âi > ai + ε‖a‖1] is bounded by δ, which would imply that Pr[âi ≤
ai + ε‖a‖1] is at least 1− δ.

Pr[âi > ai + ε‖a‖1] = Pr[∀jcount [j, hj(i)] > ai + ε‖a‖1]
= Pr[∀jai +Xi,j > ai + ε‖a‖1]
= Pr[∀jXi,j > eE(Xi,j)]

= Pr[Xi,1 > eE(Xi,1)]× . . .× Pr[Xi,d > eE(Xi,d)]

(due to each hash function being chosen indepdendently from the family)

≤ e−d ≤ δ, by Markov Inequality

3.2 Range Query

A simple approach to answer this query is to compute âi, ∀i ∈ [l, r] and then returning
∑r

i=l âi
as the approximate answer. Computing each âi is essentially a point query. However, this is
not an efficient approach because of the following two reasons: (a) The query time is high, since
(r − l + 1) point queries have to be issued; (b) The error guarantee increases linearly with the
length of the range, i.e., if R and R̂ are the exact and the approximate estimate to the query, then
R̂ ≤ R+ (r − l + 1)ε‖a‖1.

Next, we outline an approach to replace the (r− l+1) term with 2 log2 n, i.e., R̂ ≤ R+2ε log n‖a‖1.
In the following discussion each item ai is represented by i for ease of notation. Consider the
following log2 n partitions of the set {1, 2, . . . , n}.

3

P0 = {1, 2, 3, 4, 5, 6, 7, 8, . . . , n}
P1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, . . .}
P2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . .}
P3 = {{1, 2, 3, 4, 5, 6, 7, 8}, . . .}

...

Plogn = {{1, 2, 3, 4, 5, 6, 7, 8, . . . , n}}

The key observation is that any interval [l, r] can be broken into the union of α ≤ 2 log2 n of the
above intervals I1, I2, . . . , Iα (known as dyadic ranges) s.t.:

1. I1 ∪ I2 ∪ . . . ∪ Iα = [l, r].

2. Ii ∩ Ij = ∅.

For e.g., if n = 8 then [1, 7] = [{1, 2, 3, 4}]∪ [{5, 6}]∪ [{7}]. {1, 2, 3, 4} comes from P2, {5, 6} comes
from P1 and {7} comes from P0. In a general case, no more than 2 intervals will be selected from
any Pi.

Now we are ready to explain the efficient technique for answering the range queries. In each Pj ,
treat each interval as an item. Now build a Count-Min sketch on the items in each Pj . When an
update (it, ct) arrives, then for each Pj , the item containing it is incremented by ct. Given a query
[l, r], we select α dyadic intervals. For each dyadic interval, ask a point query on the Count-Min
sketch corresponding to it. We report the sum of the result of these point queries as the estimate
R̂. By extending the analysis shown in Lemma 2, it can easily seen that with probability at least
1− δ, R̂ ≤ R+ 2ε log n‖a‖1.

Lemma 3. The space occupied by the data structure is O(lognε log 1
δ). The time taken to update

the data structure or to answer the range query is O(log n log 1
δ). R ≤ R̂ and with probability at

least 1− δ, R̂ ≤ R+ 2ε log n‖a‖1, where R and R̂ are the exact and the approximate estimate.

3.3 Heavy Hitters

The naive way to identify the heavy hitters is to exhaustively ask a point query with each i ∈ [1, n].
By Theorem 2 we are guaranteed that all the items with frequency ≥ φ‖a‖1 will be reported, since
if ai ≥ φ‖a‖1, then âi ≥ φ‖a‖1. However, the time to answer the query is too high and impractical.

In the cash-register model, where the frequencies only increase, a simple solution can be obtained.
Note that an item can start being a heavy hitter following an arrival of that item. So the current set
of heavy hitters can be maintained in a heap sorted by the estimated frequency. Also, a count-min
sketch is maintained. When the frequency of an item increases, at the same time the sketch can
be queried to obtain the current estimated frequency. If the item exceeds the current threshold
for being a heavy hitter, it can be added to the data structure. At any time, the current set of
approximate heavy hitters will stored in the heap.

4

In the turnstile model (where the value of each item never falls below zero), it is easy to observe
that the above approach will not work. A divide and conquer approach is employed to attack this
problem: Imagine a binary tree structure on the domain [1, n]. Each internal node corresponds
to the set of items in the domain which are in the leaves of the subtree of that node. Treat each
internal node as a new item and its frequency is the sum of the frequencies of its two children. At
each level of the binary tree, we shall construct a count-min sketch based on all the items at that
level. (Note that this is similar to the construction used for performing range queries.)

The crucial observation is that if the item corresponding to a leaf node is a heavy hitter, then all
the items at its ancestor nodes will also be a heavy hitter in their respective count-min sketch. This
leads us to the following simple algorithm: Starting from the root, we only visit those nodes which
are heavy hitters in their respective sketch. Assume we visited a particular node v. Then we find
the frequency of its two children in the sketch they belong to. If any of them also happen to be a
heavy hitter, then we visit them recursively till we reach the leaf nodes containing the items which
are heavy hitters.

The number of true heavy hitters whose frequency exceeds φ‖a‖1 is bounded by 1/φ. Assuming
that not too many false positives are visited by the above algorithm, the number of point queries
issues will be O(log n/φ).

4 Applications

The count-min sketch is a technique which came from the theoretical computer science community
and has found wide range of applications in various domains such as Databases, Natural Language
Processing (NLP), Machine Learning, Networking, Data Mining etc. The following are some of the
applications mentioned in [3]:

1. Suppose a popular website wants to keep track of statistics on the queries used to search
the site. Maintaining the entire log of queries becomes expensive and infeasible (in terms of
storage space and query processing) after a point of time. Also, in such applications exact
statistics are not necessarily needed, slight approximation is acceptable. A count-min sketch
is a useful data structure to maintain in such a scenario.

2. In an online retailer scenario, the items are represented by goods for sale and the frequency is
the number of purchases of each item. For an online retailer which performs millions of sales
each day, maintaining exact statistics is prohibitive and hence, a count-min sketch would be
very useful.

3. To make password guessing difficult, one can keep track of the frequency of passwords online
and disallow the ones which are currently popular. This involves keeping an approximate
frequency of each password. The paper [3] mentions that the count-min data structure was
put into practice to keep track of the frequencies.

5

5 Final Comments

Cormode and Muthukrishnan introduced the count-min sketch [1]. A detailed discussion on count-
min sketch and other related sketches can be found in [2]. To see implementation of count-min
sketch in various applications, see [3]. There is a useful website which maintains a catalog of
discussions on count-min sketch and its applications [4].

References

[1] Graham Cormode, S. Muthukrishnan: An improved data stream summary: the count-min
sketch and its applications. J. Algorithms 55(1): 58-75 (2005)

[2] Graham Cormode: Sketch Techniques for Approximate Query Processing.

[3] Graham Cormode, S. Muthukrishnan: Approximating Data with the Count-Min Sketch. IEEE
Software 29(1): 64-69 (2012).

[4] https://sites.google.com/site/countminsketch/

6

