
CSCI8980 Algorithmic Techniques for Big Data September 12, 2013

Lecture 2

Dr. Barna Saha Scribe: Matt Nohelty

Overview

We continue our discussion on data streaming models where streams of elements are coming in
and main memory space is not sufficient to hold all the data. We begin by discussing the Chernoff
Bound and demonstrating it’s proof. We then look at the Universal Hash Family and discuss
pairwise, k-wise, and fully independent hash functions. Next, we dive deeper into algorithms used
to count distinct items in a stream and discuss two algorithms and analyze them.

1 Chernoff Bound

The Chernoff Bound is commonly used to show randomization algorithms produce results of accept-
able quality or to determine the number of runs needed to acheive a result of a certain probability.
Many data streaming algorithms have components of randomization so the Chernoff Bound is fre-
quently used with these algorithms. The Chernoff Bound produces tighter bounds than the Markov
Inequality or Chebyshev Inequality but it requires assumptions that those two do not. The Cher-
noff Bound requires it’s input to be independent Bernoulli random variables which the other two
inequalities do not.

Theorem 1 (The Chernoff Bound). Let X1, X2...Xn be n independent Bernoulli random variables
with Pr(Xi = 1) = pi. Let X =

∑
Xi. Hence,

E[X] = E
[∑

Xi

]
=
∑

E [Xi] =
∑

Pr(Xi = 1) =
∑

pi = µ(say).

Then the Chernoff Bound says for any ε > 0

Pr(X > (1 + ε)µ) ≤
(

eε

(1 + ε)ε

)µ
and

Pr(X < (1− ε)µ) ≤
(

e−ε

(1− ε)1−ε

)µ
When 0 < ε < 1 the above expression can be further simplified to

Pr(X > (1 + ε)µ) ≤ e
−µε2

3 and

Pr(X < (1− ε)µ) ≤ e
−µε2

2

Hence

Pr(|X − µ| > εµ) ≤ 2e
−µε2

3

1

Proof of the Chernoff Upper Bound The upper bound of the Chernoff Bound states:

Pr(X > (1 + ε)µ) ≤ e
−µε2

3

Proof.

Pr(etx ≥ et(1+ε)µ) for any t > 0

Pr(etx ≥ et(1+ε)µ) ≤ E[etx]

et(1+ε)µ
by Markov Inequality

Expand x in the numerator:

E[etx] = E[et
∑
xi]

= E[etx1etx2 ...etxn] all are independent by base assumption in Chernoff Bound

=

n∏
i=1

E[etxi]

=
n∏
i=1

[pie
t + (1− pi)]

=
n∏
i=1

[1 + pi(e
t − 1)]

≤
n∏
i=1

[epi(et − 1)] because ex > 1 + x

= e
∑n
i=1 pi(e

t−1)

= e(e
t−1)µ

Using the simplified numerator in the Chernoff Bound yields E[ee
t−1]

et(1+ε)µ

Differentiating to find t where the above is minimized results in t = ln(1 + ε)

Returning to the upper bound with t. Expand x in the numerator:

Pr(x ≥ (1 + ε)µ) ≤ e(e
(ln(1+ε)−1)µ

e1+ε)ln(1+ε)µ

=

(
eε

(1 + ε)(1+ε)

)µ
= e−µ[(1+ε)ln(1+ε)−ε]

= e
−µ

[
(1+ε)

[
ε− ε

2

2
+ ε3

3
...
]
−ε

]
= e

−µ
[
ε2

2
− ε

3

6
...
]

≤ e
−µ

[
ε2

2
− ε

3

6

]
= e−µ

ε2

2 (1− ε2)

≤ e−µ
ε2

3 which is the upper bound of the Chernoff Bound

2

The proof of the lower bound of the Chernoff Bound can be found using similar logic as the proof
of the upper bound.

2 Universal Hash Family

The Univeral Hash Family is a family of hash functions H = {h|h : [N]⇒ [M]} is called a pairwise
independent family of hash functions if for all i 6= j ∈ [N] and any k, l ∈ [M]

Prh⇐H [h(i) = k ∧ h(j) = l] =
1

M2
is a strongly universal hash family (1)

A hash function is pairwise independent if property 1 holds. This definition can be extend to
form k-wise hash functions as well. K-wise hash functions are important because they allow for
efficient construction of hash families. Fully independent hash functions generally require large
space requirements.

Hash functions are uniform over [M]

Prh⇐H [h(i) = k] =
1

M
(2)

Prh⇐H [h(i) = h(j)] =
1

M
is a weakly universal hash family (3)

To Construct a pairwise independent hash family:
Let p be a prime.
For any a, b ∈ Zp = {0, 1, 2, ...p− 1}, define ha,b : Zp ⇒ Zp by ha,b(x) = ax+ bmodp.
The resulting collection of functions H = {ha,b|a, b ∈ Zp} is a pairwise independent hash family.

3 Counting Distinct Items

Given a stream of data a, find the total number of distinct items in the stream. For the purpose of
this discussion, we assume the stream to too large to be stored in main memory.

a = a1a2...am
ai = (j, µ) where j ∈ [1, n] and µ ≥ 1
m represents the number of elements in the stream
n represents the maximum number of distinct elements that could be in the stream.

The goal is to find the actual number of distinct elements, DE. However, because we cannot
store a in main memory, we must approximate DE. This approximation will be denoted DE′. We
want to find DE′ such that the following constraint holds with probablilty ≥ (1− δ).

3

(1− ε)DE ≤ DE′ ≤ DE(1 + ε) for ε > 0 (4)

4 Algorithm - Count Distinct Items

The following algorithm attempts to guess the actual value of DE by looping through exponentially
growing values of t. For each guess, the algorithm calls ESTIMATE which returns YES if there
are at least t distinct values, otherwise it returns NO. ESTIMATE returns the correct answer
with probability ≥ (1− δ) as we will see later.

Following the for loop, we have a list of YES/NO values corresponding to each t. The algorithm
returns the largest value of t which has a value YES.

Algorithm 1 COUNT DISTINCT ITEMS[a, ε, δ]

ε′ = ε/2
for t = 1, d(1 + ε′)e,

⌈
(1 + ε′)2

⌉
, ...
⌈
(1 + ε′)log1+ε′n

⌉
do

δ′ = ε′δ
logn {Run in parallel}

bt = ESTIMATE(a, t, ε′, δ′) {bt is a boolean variable YES/NO}
end for
return the smallest value of t such that bt−1 = YES and bt = NO if no such t exists, return n

Below is an example of the output produced by the for loop in Algorithm 1. This is the likely
output produced in the case where (1 + ε′) ≤ DE ≤ (1 + ε′)2.

t = 1⇒ YES
t = (1 + ε′)⇒ YES
t = (1 + ε′)2 ⇒ NO
t = (1 + ε′)3 ⇒ NO
...
t = n⇒ NO

As the example illustrates, the resulting DE′ satisfies the constraint: (1−ε)DE ≤ DE′ ≤ DE(1+ε)

Proof. For each t, we get the correct result with probability δ′ = ε′δ
logn and there are log1+ε′n different

values for t.

Pr(Error for any t) ≤ δ′

Pr(Error in at least one t) ≤
∑
t

Pr(Error for any t)

≤ log1+ε′nδ
′

≈ 1

ε′
lognδ′

= δ

Pr(No error in any t) < 1− δ

4

5 Algorithm - ESTIMATE

ESTIMATE randomly selects c
ε′2 log 1

δ′ hash functions from a fully-independent hash family. The
hash function h is of the form h : [1...n]⇒ [1...t].

We then compute the hash value for every value of in the stream for each hash function. If the
hash function ever returns 1, use YES for this t, otherwise use NO. Finally, count the number of
NO values and if it’s greater than or equal to c

ε′2 log 1
δ′ , return NO, otherwise return YES.

ESTIMATE returns the correct answer with probabily ≥ (1− δ) because there are c
ε′2 log 1

δ′ hash
functions used and the most common answer wins. This minimizes the impact of the randomization
in the hash functions.

Algorithm 2 [ESTIMATE(a, t, ε′, δ′)]

count⇐ 0
for t = 1, c

ε′2 log 1
δ′ do

Select a hash function hi uniformly and randomly from a fully-independent hash family H
{run in parallel}
bit ⇐ NO
repeat

Consider the current element in the stream a, say ai = (j, µ)
if hi(j) == 1 then
bit ⇐ YES, BREAK

end if
until a is exhasted
if bit == NO then
count = count+ 1

end if
end for
if count ≥ 1

e
c
ε′2

log 1
δ′ then

return NO
else

return YES
end if

Proof. The goal is to return YES when DE > (1 + ε)t and to return NO when DE < (1− ε)t.

Let hi be the ith run through the for loop.
There are k runs where k = c

ε′2 log 1
δ′

Pr(hi(j) = 1) = 1
t by definition of h

Pr(Return NO for the ith run) = Pr(None of the distinct elements are mapped to 1 by hi)

= (1− 1

t
)DE

5

Lemma 2. Consider the ith round of ESTIMATE(a, t, ε′, δ′) for any i ∈ [c
ε2

log 1
δ′]

If DE > (1 + ε)t and ε < 1 then Pr[bit == NO] ≤ 1
e −

ε
2e

Pr(ith run returns NO) ≤ (1− 1

t
)(1+ε)t

≈ e−(1+ε) when t is large

= e−1(1− ε+
ε2

2
...)

≤ 1

e
− ε

e
+
ε2

2e

≤ 1

e
− ε

2e

If DE < (1− ε)t and ε < 1 then Pr[bit == NO] ≥ 1
e + ε

2e

Pr(ith run returns NO) ≥ (1− 1

e
)(1−ε)t

≥ 1

e
+

ε

2e
by the same logic as above

Lemma 3. Demostrates the bounds of the error in Algorithm 1.
If DE > (1 + ε′)t then Pr[bt == NO] ≤ δ′

2

If DE < (1− ε′)t then Pr[bt == Y ES] ≤ δ′

2

Pr(Algorithm 1 returns NO) = Pr(x >
k

e
) because we return NO if more than k

e runs return NO

≤ e−ε
′2ck

Define a random variable xi = 1 if algorithm returns NO, otherwise xi = 0.

x =
∑

xi

E[x] =
∑

E[x]

=
∑

Pr(xi = 1)

=
∑

Pr(ith run returns NO)

≤ k(
1

e
+

ε

2e
) by Lemma 2

6

Re-write Pr(x > k
e) in the form of the Chernoff Bound

Pr(x > (1 + ε′)E[x])

(1 + ε′)k(1e −
ε′

2e) =
k

e
by using the value of E[x] from above

(1 + ε′)(1− ε′

2) = 1

1 + ε =
2

2− ε′

Pr(x > k
e) ≤ e−ε

2 µ
3

= e−ε
2ck

≤ δ′

2
using k = c

ε′2 log
1
δ′

The lower bound can be demonstrated with similar logic to what was done to prove the upper
bound above. This shows that when run enough times, c

ε′2 log
1
δ′ , we can minimize the probability

for error to a sufficient level.

Lemma 4. If |DE − t| > ε′t then Pr[ERROR] ≤ δ′

Using the Union Bound, we know the total Pr[ERROR] cannot exceed the sum of the Pr[ERROR]
of the lower bound and the Pr[ERROR] of the upper bound.

δ′

2 + δ′

2 ≤ δ
′

Lemma 5. For all t such that |DE − t| > ε′t then Pr[ERROR] ≤ δ

Theorem 6. Algorithm 1 returns an estimate of DE within (1± ε) with probability ≥ (1− δ).

Theorem 6 shows that this algorithm to count distinct items has achieved our goal of finding
an algorithm that computes DE′ under the following accuracy constraint: (1 − ε)DE ≤ DE′ ≤
DE(1 + ε) for ε > 0 and does so with probability ≥ (1− δ).

6 Space and Time Complexity of Count Distinct Items

Space Complexity: O(1
ε3

log n(log1
δ+log logn+log1

ε))
Time Complexity: O(1

ε3
log n(log1

δ+log logn+log1
ε))

Ignoring constants, there are 1
ε logn copies that need to be stored and each requires 1 bit.

The space complexity of ESTIMATE is 1
ε2

log logn
εδ

Expanding this space complexity yields: 1
ε2

(loglogn+ log 1
ε + log 1

δ)
Combining the space complexity and number of copies yields the total space complexity:

7

O(
1

ε3
logn(log

1

δ
+ log logn+ log

1

ε
)) (5)

The time complexity can be computed in the same way as the space complexity.

In practice, the space and time dependency on ε3 is generally problematic. The optimal lower
bound on space complexity for counting distinct items in a stream was shown to be Ω(1

ε2
+ log n).

References

[1] Daniel M. Kane, Jelani Nelson and David P. Woodruff. An Optimal Algorithm for the Distinct
Elements Problem. PODS 2010: 41-52.

8

