CMPSCI590D: Algorithms for Data Science

Analysis of K-means++

Instructor: Barna Saha

1 K-means Problem

For the k-means problem, we are given an integer k and a set of n data points X € R?. The goal
is to select k centers C to minimize the following objective.
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That is we want to select k centers to minimize the sum of squared distances of all points to their
respective nearest center.

k-means problem is NP-Hard. Lloyd’s algorithm is a popular heuristic that is employed to solve
k-means problem. However, depending on the distribution of the data points, it is possible that
Lloyd’s algorithm converges to a local optimum that is far from the global optimum. k-means—++
is a way to ensure that Llyod’s algorithm does not converge to a local optimum which is far off. In
other words, even with k-means++-, it is possible that the algorithm converges to a local optimum,
but that local optimum is close to the global optimum.

1.1  Details of k-means++ Algorithm

Let D(x) denote the distance of  from the closest center.

1. Take one center c¢1, chosen uniformly at random from X.

2. Take a new center ¢;, choosing x € X with probability ZLQB(QC)Q
zeX
3. Repeat step 2 until we have taken k centers altogether.

4. Now proceed as with the standard k-means algorithm.

1.2 Analysis

Here is a standard result from Linear Algebra.

Lemma 1. Let S be a set of points with center of mass c¢(S), and let z be an arbitrary point. Then
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Theorem 2. If C s constructed with k-means++, then the corresponding objective function ¢
satisfies
E[¢] < 8(Ink +2)¢opr

The above claim holds after the first iteration. Later iterations can only improve the bound as ¢
decreases.

We will only show a partial result. We will show if cluster centers are chosen from each cluster then
k-means++ is 8-competitive.

Theorem 3. Let C contains the current centers that have already been chosen. Let A be a cluster
in the optimal solution not represented in C.

If we add a random center to C from A, chosen with D* weighing then

Elp(A)] < 8popr(A)

Proof.
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Let z be the closest center to some a € A. Using triangle inequality, we have

D(ap) < llag — 2|l2 < D(a) + [la — ao|l2

Therefore,

D(ap)* < (D(a) + [la — aoll2)* < 2D(a)* + 2[|a — ao||”

Summing over all a € A, we get
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Using the above in the expression for E[¢(A)] we get
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Now use Lemma [Il
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This completes the proof.
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