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The Problem of  Clustering 
�  Given a set of  points, with a notion of  distance 

between points, group the points into some number 
of  clusters, so that members of  a cluster are 
“close” to each other, while members of  different 
clusters are “far.” 
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Example: Clusters 
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Clustering in Low 
Dimensional Euclidean 

Space is Easy 



Modern Clustering Problem 
�  May involve Euclidean spaces of  very high 

dimension.  

�  Non Euclidean space: Jaccard distance, Cosine 
Distance, Hamming Distance, Edit Distance etc. 

�  Example:  
�  Cluster documents by topics based on occurrences of  

unusual words 
�  Cluster moviegoers by the type or types of  movies 

they like 
�  Cluster genes by their sequence similarity 



Clustering Strategies 
�  Two fundamentally different approaches 

�  Hierarchical or Agglomerative Clustering 
�  Start with each point in its own cluster 

�  Merge clusters based on ``closeness’’ 

�  Point Assignment 
�  Start with some clusters (possibly empty) 

�  Consider points and insert them in appropriate clusters 



Which is Better? 

�  Point assignment good 
when clusters are nice, 
convex shapes. 

�  Hierarchical can win 
when shapes are weird. 
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Hierarchical Clustering 
�  Two important questions: 

1.  How do you determine the “nearness” of  clusters? 

2.  How do you represent a cluster of  more than one 
point? 
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Hierarchical Clustering – (2) 
�  Key problem: as you build clusters, how do you 

represent the location of  each cluster, to tell which 
pair of  clusters is closest? 

�  Euclidean case: each cluster has a centroid = 
average of  its points. 
�  Measure intercluster distances by distances of  

centroids. 



Example 

x (1.5,1.5) 

x (4.5,0.5) 
x (1,1) 

x (4.7,1.3) 



Tree showing the grouping 
of  points 

(0,0) (1,2) (2,1) (4,1) (5,0) (5,3) 



And in the Non-Euclidean Case? 

�  The only “locations” we can talk about are the 
points themselves. 
�  I.e., there is no “average” of  two points. 

�  Approach 1: clustroid  = point “closest” to other 
points. 
�  Treat clustroid as if  it were centroid, when computing 

intercluster distances.  
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“Closest” Point? 
�  Possible meanings: 

1.  Smallest maximum distance to the other points. 

2.  Smallest average distance to other points. 
3.  Smallest sum of  squares of  distances to other 

points. 
4.  Etc., etc. 



Efficiency of  Hierarchical 
Clustering 

�  Start by computing O(n2) distances 

�  Subsequent steps taken O((n-1)2), O((n-2)2),…. 

�  Total=O(n3) 

�  Can be reduced to O(n2logn) using priority queue 
(See 7.2.2) 

�  Can you reduce it to o(n2)? 



K-Means 
�  An example of  a point-assignment based clustering 

�  Initially choose k points that are likely to be in 
different clusters 

�  Make these points the centroids of  their clusters 

�  For each remaining point p DO 
�  Find the centroid to which p is closest 

�  Add p to the cluster of  that centroid 

�  Adjust the centroid of  that cluster to account for p 

�  Optional: reassign all points based on the new 
centroids. Repeat as long as there is any change in 
assignment. 



How to select the K centers? 


