
Jeffrey	D.	Ullman	
Stanford	University	

2	

¡  Given	a	set	of	points,	with	a	no1on	of	distance	
between	points,	group	the	points	into	some	
number	of	clusters,	so	that	members	of	a	
cluster	are	“close”	to	each	other,	while	
members	of	different	clusters	are	“far.”	

3	

x x
x x x x
x x x x
x x x

x x

x
xx x
x x

x x x
x

x x x
x

 x x
x x x x
 x x x

x

x

x

4	

¡  Clustering	in	two	dimensions	looks	easy.	
¡  Clustering	small	amounts	of	data	looks	easy.	
¡  And	in	most	cases,	looks	are	not	deceiving.	

5	

¡ Many	applica1ons	involve	not	2,	but	10	or	
10,000	dimensions.	

¡  High-dimensional	spaces	look	different:	almost	
all	pairs	of	points	are	at	about	the	same	
distance.	

6	

¡  Assume	random	points	between	0	and	1	in	each	
dimension.	

¡  In	2	dimensions:	a	variety	of	distances	between	
0	and	1.41.	

¡  In	any	number	of	dimensions,	the	distance	
between	two	random	points	in	any	one	
dimension	is	distributed	as	a	triangle.	

Any	point	is	distance	
zero	from	itself.	

Half	the	points	are	the	first	
of	points	at	distance	½.	

Only	points	0	and	
1	are	distance	1.	

7	

¡  The	law	of	large	numbers	applies.	
¡  Actual	distance	between	two	random	points	is	
the	sqrt	of	the	sum	of	squares	of	essen1ally	the	
same	set	of	differences.	
§  I.e.,	“all	points	are	the	same	distance	apart.”	

¡  Euclidean	spaces	have	dimensions,	and	points	
have	coordinates	in	each	dimension.	

¡  Distance	between	points	is	usually	the	square-
root	of	the	sum	of	the	squares	of	the	distances	
in	each	dimension.	

¡  Non-Euclidean	spaces	have	a	distance	measure,	
but	points	do	not	really	have	a	posi1on	in	the	
space.	
§  Big	problem:	cannot	“average”	points.	

8	

9	

¡  Objects	are	sequences	of	{C,A,T,G}.	
¡  Distance	between	sequences	=	edit	distance	=	
the	minimum	number	of	inserts	and	deletes	
needed	to	turn	one	into	the	other.	
§ No1ce:	no	way	to	“average”	two	strings.	

¡  In	prac1ce,	the	distance	for	DNA	sequences	is	
more	complicated:	allows	other	opera1ons	like	
muta/ons	(change	of	a	symbol	into	another)	or	
reversal	of	substrings.	

10	

¡  Hierarchical	(Agglomera1ve):	
§  Ini1ally,	each	point	in	cluster	by	itself.	
§  Repeatedly	combine	the	two	“nearest”	clusters	into	
one.	

¡  Point	Assignment:	
§ Maintain	a	set	of	clusters.	
§  Place	points	into	their	“nearest”	cluster.	
§  Possibly	split	clusters	or	combine	clusters	as	we	go.	

¡  Point	assignment	
good	when	clusters	
are	nice,	convex	
shapes.	

¡  Hierarchical	can	win	
when	shapes	are	
weird.	

11	

Aside:	if	you	realized	you	had	concentric	
clusters,	you	could	map	points	based	on	
distance	from	center,	and	turn	the	problem	
into	a	simple,	one-dimensional	case.	

12	

¡  Two	important	ques1ons:	
1.  How	do	you	determine	the	“nearness”	of	clusters?	
2.  How	do	you	represent	a	cluster	of	more	than	one	

point?	

13	

¡  Key	problem:	as	you	build	clusters,	how	do	you	
represent	the	loca1on	of	each	cluster,	to	tell	
which	pair	of	clusters	is	closest?	

¡  Euclidean	case:	each	cluster	has	a	centroid	=	
average	of	its	points.	
§ Measure	intercluster	distances	by	distances	of	
centroids.	

14	

	 	 	 	 			(5,3)
 o
 (1,2)
 o

 o (2,1) o (4,1)

	
o (0,0) o

 (5,0)	

x (1.5,1.5)

x (4.5,0.5)
x (1,1)

x (4.7,1.3)

15	

(0,0)	 (1,2)	 (2,1)	 (4,1)	 (5,0)	 (5,3)	

16	

¡  The	only	“loca1ons”	we	can	talk	about	are	the	
points	themselves.	
§  I.e.,	there	is	no	“average”	of	two	points.	

¡  Approach	1:	clustroid		=	point	“closest”	to	other	
points.	
§  Treat	clustroid	as	if	it	were	centroid,	when	
compu1ng	intercluster	distances.		

17	

¡  Possible	meanings:	
1.  Smallest	maximum	distance	to	the	other	points.	
2.  Smallest	average	distance	to	other	points.	
3.  Smallest	sum	of	squares	of	distances	to	other	

points.	
4.  Etc.,	etc.	

18	

1	 2	

3	

4	

5	

6	

intercluster	
distance	

clustroid	

clustroid	

19	

¡  Approach	2:	intercluster	distance	=	minimum	
of	the	distances	between	any	two	points,	one	
from	each	cluster.	

¡  Approach	3:	Pick	a	no1on	of	“cohesion”	of	
clusters,	e.g.,	maximum	distance	from	the	
centroid	or	clustroid.	
§ Merge	clusters	whose	union	is	most	cohesive.	

20	

¡  Approach	1:	Use	the	diameter	of	the	merged	
cluster	=	maximum	distance	between	points	in	
the	cluster.	

¡  Approach	2:	Use	the	average	distance	
between	points	in	the	cluster.	

¡  Approach	3:	Density-based	approach:	take	the	
diameter	or	average	distance,	e.g.,	and	divide	
by	the	number	of	points	in	the	cluster.	
§  Perhaps	raise	the	number	of	points	to	a	power	first,	
e.g.,	square-root.	

¡  It	really	depends	on	the	shape	of	clusters.	
§ Which	you	may	not	know	in	advance.	

¡  Example:	we’ll	compare	two	approaches:	
1.  Merge	clusters	with	smallest	distance	between	

centroids	(or	clustroids	for	non-Euclidean).	
2.  Merge	clusters	with	the	smallest	distance	between	

two	points,	one	from	each	cluster.	

21	

¡  Centroid-based	
merging	works	well.	

¡  But	merger	based	on	
closest	members	
might	accidentally	
merge	incorrectly.	

22	

A	and	B	have	closer	centroids	
than	A	and	C,	but	closest	points	
are	from	A	and	C.	

A	

B	

C	

¡  Linking	based	on	
closest	members	
works	well.	

¡  But	Centroid-based	
linking	might	cause	
errors.	

23	

24	

¡  An	example	of	point-assignment.	
¡  Assumes	Euclidean	space.	
¡  Start	by	picking	k,	the	number	of	clusters.	
¡  Ini1alize	clusters	with	a	seed	(=	one	point	per	
cluster).	
§  Example:	pick	one	point	at	random,	then		k-1	other	
points,	each	as	far	away	as	possible	from	the	
previous	points.	
§ OK,	as	long	as	there	are	no	outliers	(points	that	are	far	from	
any	reasonable	cluster).	

¡  Basic	idea:	pick	a	small	sample	of	points,	cluster	
them	by	any	algorithm,	and	use	the	centroids	as	
a	seed.	

¡  In	k-means++,	sample	size	=	k	1mes	a	factor	
that	is	logarithmic	in	the	total	number	of	points.	

¡  Sequen1ally	pick	sample	points	randomly,	but	
the	probability	of	adding	a	point	p	to	the	
sample	is	propor1onal	to	D(p)2.	
§ D(p)	=	distance	between	p	and	the	nearest	picked	
point.	

25	

¡  k-means++,	like	other	seed	methods,	is	
sequen1al.	
§  You	need	to	update	D(p)	for	each	unpicked	p	due	to	
new	point.	

¡  Naturally	parallel:	many	compute	nodes	can	
each	handle	a	small	set	of	points.	
§  Each	picks	a	few	new	sample	points	using	same	D(p).	

¡  Really	important	and	common	trick:	don’t	
update	aker	every	selec1on;	rather	make	many	
selec1ons	at	one	round.	
§  Subop1mal	picks	don’t	really	mamer.	

26	

27	

1.  For	each	point,	place	it	in	the	cluster	whose	
current	centroid	it	is	nearest.	

2.  Aker	all	points	are	assigned,	fix	the	centroids	
of	the	k	clusters.	

3.  Op1onal:	reassign	all	points	to	their	closest	
centroid.	
§  Some1mes	moves	points	between	clusters.	

28	

1

2

3

4

5

6

7 8 x

x

Clusters	after	first	round	

Reassigned	
points	

29	

¡  Try	different	k,	looking	at	the	change	in	the	
average	distance	to	centroid,	as	k		increases.	

¡  Average	falls	rapidly	un1l	right	k,	then	changes	
limle.	

k	

Average	
distance	to	
centroid	 Best	value	

of	k	

Note:	binary	search	
for	k	is	possible.	

30	

x x
x x x x
x x x x
x x x

x x

x
xx x
x x

x x x
x

x x x
x

 x x
x x x x
 x x x

x

x

x

Too	few;	
many	long	
distances	
to	centroid.	

31	

x x
x x x x
x x x x
x x x

x x

x
xx x
x x

x x x
x

x x x
x

 x x
x x x x
 x x x

x

x

x

Just	right;	
distances	
rather	short.	

32	

x x
x x x x
x x x x
x x x

x x

x
xx x
x x

x x x
x

x x x
x

 x x
x x x x
 x x x

x

x

x

Too	many;	
little	improvement	
in	average	
distance.	

33	

¡  BFR	(Bradley-Fayyad-Reina)	is	a	variant	of	k-
means	designed	to	handle	very	large	(disk-
resident)	data	sets.	

¡  It	assumes	that	clusters	are	normally	
distributed	around	a	centroid	in	a	Euclidean	
space.	
§  Standard	devia1ons	in	different	dimensions	may	
vary.	

34	

¡  Points	are	read	one	main-memory-full	at	a	
1me.	

¡ Most	points	from	previous	memory	loads	are	
summarized	by	simple	sta1s1cs.	
§  Also	kept	in	main	memory,	which	limits	how	many	
points	can	be	read	in	one	“memory	load.”	

¡  To	begin,	from	the	ini1al	load	we	select	the	
ini1al	k	centroids	by	some	sensible	approach.	

35	

1.  The	discard	set	(DS):	points	close	enough	to	a	
centroid	to	be	summarized.	

2.  The	compression	set	(CS):	groups	of	points	that	
are	close	together	but	not	close	to	any	
centroid.		They	are	summarized,	but	not	
assigned	to	a	cluster.	

3.  The	retained	set	(RS):	isolated	points.	

36	

A	cluster.		Its	points	
are	in	DS.	

The	centroid	

Compression	sets.	
Their	points	are	in	CS.	

Points	in	RS	

37	

¡  Each	cluster	in	the	discard	set	and	each	
compression	set	is	summarized	by:	
1.  The	number	of	points,	N.	
2.  The	vector	SUM,	whose	i	th	component	is	the	sum	

of	the	coordinates	of	the	points	in	the	i	th	
dimension.	

3.  The	vector	SUMSQ:	i	th	component	=	sum	of	
squares	of	coordinates	in	i	th	dimension.	

38	

¡  2d	+	1	values	represent	any	number	of	points.	
§  d		=	number	of	dimensions.	

¡  Averages	in	each	dimension	(centroid	
coordinates)	can	be	calculated	easily	as	SUMi/
N.	
§  SUMi	=	i	th	component	of	SUM.	

¡  Variance	in	dimension	i	can	be	computed	by:	
(SUMSQi	/N)	–	(SUMi	/N)2	

§  And	the	standard	devia1on	is	the	square	root	of	
that.	

39	

1.  Find	those	points	that	are	“sufficiently	close”	
to	a	cluster	centroid;	add	those	points	to	that	
cluster	and	the	DS.	

2.  Use	any	main-memory	clustering	algorithm	to	
cluster	the	remaining	points	and	the	old	RS.	

§  Clusters	go	to	the	CS;	outlying	points	to	the	RS.	

40	

3.  Adjust	sta1s1cs	of	the	clusters	to	account	for	
the	new	points.	

§  Consider	merging	compressed	sets	in	the	CS.	
4.  If	this	is	the	last	round,	merge	all	compressed	

sets	in	the	CS	and	all	RS	points	into	their	
nearest	cluster.	

41	

¡  How	do	we	decide	if	a	point	is	“close	enough”	
to	a	cluster	that	we	will	add	the	point	to	that	
cluster?	

¡  How	do	we	decide	whether	two	compressed	
sets	deserve	to	be	combined	into	one?	

42	

¡  We	need	a	way	to	decide	whether	to	put	a	
new	point	into	a	cluster.	

¡  BFR	suggest	two	ways:	
1.  The	Mahalanobis	distance	is	less	than	a	threshold.	
2.  Low	likelihood	of	the	currently	nearest	centroid	

changing.	

43	

¡  Normalized	Euclidean	distance	from	centroid.	
¡  For	point	(x1,…,	xk)	and	centroid	(c1,…,	ck):	

1.  Normalize	in	each	dimension:	yi	=	(xi	-ci)/σi		
§  σi	=	standard	devia1on	in	i	th	dimension	for	this	cluster.	

2.  Take	sum	of	the	squares	of	the	yi	’s.	
3.  Take	the	square	root.	

44	

¡  If	clusters	are	normally	distributed	in	d		
dimensions,	then	aker	transforma1on,	one	
standard	devia1on	=	√d.	
§  I.e.,	70%	of	the	points	of	the	cluster	will	have	a	
Mahalanobis	distance	<	√d.	

¡  Accept	a	point	for	a	cluster	if	its	M.D.	is	<	some	
threshold,	e.g.	4	standard	devia1ons.	

45	

σ

2σ

46	

¡  Similar	to	measuring	cohesion.	For	example:	
¡  Compute	the	variance	of	the	combined	
subcluster,	in	each	dimension.	
§ N,	SUM,	and	SUMSQ	allow	us	to	make	that	
calcula1on	quickly.	

¡  Combine	if	the	variance	is	below	some	
threshold.	

¡ Many	alterna1ves:	treat	dimensions	
differently,	consider	density.	

47	

¡  Problem	with	BFR/k-means:	
§  Assumes	clusters	are	normally	distributed	in	each	
dimension.	

§  And	axes	are	fixed	–	ellipses	at	an	angle	are	not	OK.	
¡  CURE:	
§  Assumes	a	Euclidean	distance.	
§  Allows	clusters	to	assume	any	shape.	

48	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	

49	

1.  Pick	a	random	sample	of	points	that	fit	in	main	
memory.	

2.  Cluster	these	points	hierarchically	–	group	
nearest	points/clusters.	

3.  For	each	cluster,	pick	a	sample	of	points,	as	
dispersed	as	possible.	

4.  From	the	sample,	pick	representa1ves	by	
moving	them	(say)	20%	toward	the	centroid	of	
the	cluster.	

50	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	

51	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	

Pick	(say)	4	
remote	points	
for	each	
cluster.	

52	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	

Move	points	
(say)	20%	
toward	the	
centroid.	

¡  A	large,	dispersed	cluster	will	have	large	moves	
from	its	boundary.	

¡  A	small,	dense	cluster	will	have	limle	move.	
¡  Favors	a	small,	dense	cluster	that	is	near	a	
larger	dispersed	cluster.	

53	

54	

¡  Now,	visit	each	point	p	in	the	data	set.	
¡  Place	it	in	the	“closest	cluster.”	
§ Normal	defini1on	of	“closest”:	that	cluster	with	the	
closest	(to	p)	among	all	the	sample	points	of	all	the	
clusters.	

