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Hierarchical /Agglomerative and Point-
Assignment Approaches

Measures of "*Goodness” for Clusters

BFR Algorithm

CURE Algorithm




The Problem of Clustering

Given a set of points, with a notion of distance
between points, group the points into some
number of clusters, so that members of a
cluster are “close” to each other, while
members of different clusters are “far.”



Example: Clusters



Problems With Clustering

Clustering in two dimensions looks easy.
Clustering small amounts of data looks easy.
And in most cases, looks are deceiving.



The Curse of Dimensionality

Many applications involve not 2, but 10 or

10,000 dimensions.
High-dimensional spaces look different: almost

all pairs of points are at about the same
distance.



Example: Curse of Dimensionality

Assume random points between 0 and 1 in each
dimension.

In 2 dimensions: a variety of distances between
0 and 1.41.

In any number of dimensions, the distance
between two random points in any one
dimension is distributed as a triangle.

Half the points are the first

Any point is distance of points at distance V5.
zero from itself.
Only points o and
/ 1 are distance 1.




Example — Continued

The law of large numbers applies.

Actual distance between two random points is
the sgrt of the sum of squares of essentially the
same set of differences.

= |.e., “all points are the same distance apart.”



Euclidean and Non-Euclidean Distances

Euclidean spaces have dimensions, and points
have coordinates in each dimension.

Distance between points is usually the square-
root of the sum of the squares of the distances
in each dimension.

Non-Euclidean spaces have a distance measure,
but points do not really have a position in the
space.

" Big problem: cannot “average” points.



Example: DNA Sequences

Objects are sequences of {C,A,T,G}.

Distance between sequences = edit distance =
the minimum number of inserts and deletes
needed to turn one into the other.

= Notice: no way to “average” two strings.

In practice, the distance for DNA sequences is
more complicated: allows other operations like
mutations (change of a symbol into another) or
reversal of substrings.



Methods of Clustering

" |nitially, each point in cluster by itself.

= Repeatedly combine the two “nearest” clusters into
one.

= Maintain a set of clusters.

" Place points into their “nearest” cluster.
= Possibly split clusters or combine clusters as we go.

10



Which i1s Better?

Point assighment
good when clusters
are nice, convex
shapes.
Hierarchical can win
when shapes are
weird.

Aside: if you realized you had concentric
clusters, you could map points based on
distance from center, and turn the problem

into a simple, one-dimensional case.
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Hierarchical Clustering

Two important questions:
1. How do you determine the “nearness” of clusters?

2. How do you represent a cluster of more than one
point?
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Hierarchical Clustering — (2)

: as you build clusters, how do you
represent the location of each cluster, to tell
which pair of clusters is closest?

. each cluster has a centroid =
average of its points.

= Measure intercluster distances by distances of
centroids.
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(0,0) (1,2)  (2,1) (4,1) (5,0) (5,3)
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And in the Non-Euclidean Case?

The only “locations” we can talk about are the
points themselves.

= |.e., there is no “average” of two points.

Approach 1: clustroid = point “closest” to other
points.

= Treat clustroid as if it were centroid, when
computing intercluster distances.
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“Closest” Point?

Possible meanings:

Smallest maximum distance to the other points.
Smallest average distance to other points.

3. Smallest sum of squares of distances to other
points.

4. Etc., etc.
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Example: Intercluster Distance

clustroid

clustroid

intercluster
distance
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Other Approaches to Defining

“Nearness” of Clusters

Approach 2: intercluster distance = minimum
of the distances between any two points, one
from each cluster.

Approach 3: Pick a notion of “cohesion” of
clusters, e.g., maximum distance from the
centroid or clustroid.

= Merge clusters whose union is most cohesive.

19



Approach 1: Use the diameter of the merged
cluster = maximum distance between points in
the cluster.

Approach 2: Use the average distance
between points in the cluster.

Approach 3: Density-based approach: take the
diameter or average distance, e.g., and divide
by the number of points in the cluster.

= Perhaps raise the number of points to a power first,
e.g., square-root.
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Which i1s Best

It really depends on the shape of clusters.

= Which you may not know in advance.
Example: we’ll compare two approaches:

1. Merge clusters with smallest distance between
centroids (or clustroids for non-Euclidean).

2. Merge clusters with the smallest distance between
two points, one from each cluster.
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Case 1: Convex Clusters

Centroid-based
merging works well.
But merger based on
closest members

A and B have closer centroids

mlght aCCidenta”y than A and C, but closest points
. are from A and C.
merge incorrectly.
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Case 2: Concentric Clusters

Linking based on
closest members
works well.

But Centroid-based
linking might cause
errors.
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k—Means Algorithm(s)

An example of point-assignment.
Assumes Euclidean space.
Start by picking k, the number of clusters.

Initialize clusters with a seed (= one point per
cluster).

= Example: pick one point at random, then k-1 other

points, each as far away as possible from the
previous points.

OK, as long as there are no outliers (points that are far from
any reasonable cluster).
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k-Means++

Basic idea: pick a small sample of points, cluster
them by any algorithm, and use the centroids as
a seed.

In k-means++, sample size = k times a factor
that is logarithmic in the total number of points.
Sequentially pick sample points randomly, but
the probability of adding a point p to the
sample is proportional to D(p)?.

" D(p) = distance between p and the nearest picked
point.
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k-Means | |

k-means++, like other seed methodes, is

sequential.
" You need to update D(p) for each unpicked p due to

new point.
Naturally parallel: many compute nodes can

each handle a small set of points.

= Each picks a few new sample points using same D(p).
Really important and common trick: don’t
update after every selection; rather make many
selections at one round.

= Suboptimal picks don’t really matter. y



Populating Clusters

For each point, place it in the cluster whose
current centroid it is nearest.
After all points are assigned, fix the centroids

of the k clusters.
: reassign all points to their closest

centroid.
=  Sometimes moves points between clusters.
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Example: Assigning Clusters

Reassigned
points

Clusters after first round
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Getting k Right

Try different k, looking at the change in the
average distance to centroid, as k increases.

Average falls rapidly until right k, then changes
little.

T

Note: binary search
Average

| for k is possible.
distance to

centroid Best value
of k
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Example: Picking k

Too few;
many long
distances
to centroid.
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Example: Picking k

Just right;
distances
rather short.
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Example: Picking k

Too many;

little improvement
in average
distance.
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BFR Algorithm

BFR (Bradley-Fayyad-Reina) is a variant of k-
means designed to handle very large (disk-
resident) data sets.

It assumes that clusters are normally
distributed around a centroid in a Euclidean
space.

= Standard deviations in different dimensions may
vary.
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Points are read one main-memory-full at a

time.
Most points from previous memory loads are
summarized by simple statistics.

= Also kept in main memory, which limits how many
points can be read in one “memory load.”

To begin, from the initial load we select the
initial kK centroids by some sensible approach.
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Three Classes of Points

The discard set (DS): points close enough to a
centroid to be summarized.

The compression set (CS): groups of points that
are close together but not close to any
centroid. They are summarized, but not
assigned to a cluster.

The retained set (RS): isolated points.
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“Galaxies” Picture

Points in RS

Oe— —
Compression sets.
Their points are in CS.\>®
@)

A cluster. Its points
are in DS.

The centroid
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Summarizing Sets of Points

1.
2.

Each cluster in the discard set and each
compression set is summarized by:

The number of points, N.

The vector SUM, whose i " component is the sum
of the coordinates of the points in the i th
dimension.

The vector SUMSQ: i " component = sum of
squares of coordinates in i th dimension.
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Comments

2d + 1 values represent any number of points.

" d = number of dimensions.

Averages in each dimension (centroid

coordinates) can be calculated easily as SUM./

N.

= SUM. =it component of SUM.

Variance in dimension j can be computed by:

(SUMSQ; /N ) = (SUM. /N )?

= And the standard deviation is the square root of
that.
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Processing a *“Memory-Load"” of Points

Find those points that are “sufficiently close”
to a cluster centroid; add those points to that
cluster and the DS.

Use any main-memory clustering algorithm to
cluster the remaining points and the old RS.

Clusters go to the CS; outlying points to the RS.
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Processing — (2)

Adjust statistics of the clusters to account for
the new points.

Consider merging compressed sets in the CS.
If this is the last round, merge all compressed
sets in the CS and all RS points into their
nearest cluster.
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A Few Detalls . ..

How do we decide if a point is “close enough”

to a cluster that we will add the point to that
cluster?

How do we decide whether two compressed
sets deserve to be combined into one?
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How Close i1s Close Enough?

We need a way to decide whether to put a
new point into a cluster.
BFR suggest two ways:

1. The Mahalanobis distance is less than a threshold.

2. Low likelihood of the currently nearest centroid
changing.
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Mahalanobis Distance

Normalized Euclidean distance from centroid.
For point (x,,..., x,) and centroid (c,..., ¢,):
1. Normalize in each dimension: y, = (x;-c;)/0;
o, = standard deviation in i " dimension for this cluster.

2. Take sum of the squares of the y,’s.
3. Take the square root.
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Mahalanobis Distance — (2)

If clusters are normally distributed in d
dimensions, then after transformation, one

standard deviation = Vd.

= |.e., 70% of the points of the cluster will have a
Mahalanobis distance < Vd.

Accept a point for a cluster if its M.D. is < some
threshold, e.g. 4 standard deviations.
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Picture: Equal M.D. Regions




Should Two CS Subclusters Be Combined?

Similar to measuring cohesion. For example:
Compute the variance of the combined
subcluster, in each dimension.

= N, SUM, and SUMSQ allow us to make that
calculation quickly.

Combine if the variance is below some
threshold.

. treat dimensions
differently, consider density.
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The CURE Algorithm

Problem with BFR/k-means:

= Assumes clusters are normally distributed in each
dimension.

= And axes are fixed — ellipses at an angle are OK.

CURE:

= Assumes a Euclidean distance.
= Allows clusters to assume any shape.
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Example: Stanford Faculty Salaries




Starting CURE

Pick a random sample of points that fit in main
memory.

Cluster these points hierarchically — group
nearest points/clusters.

For each cluster, pick a sample of points, as
dispersed as possible.

From the sample, pick representatives by
moving them (say) 20% toward the centroid of
the cluster.
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Example: Initial Clusters
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Example: Pick Dispersed Points

Pick (say) 4
remote points
for each
cluster.
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Example: Pick Dispersed Points

Move points
(say) 20%
toward the
centroid.
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Why the 20% Move Inward?

A large, dispersed cluster will have large moves
from its boundary.

A small, dense cluster will have little move.

Favors a small, dense cluster that is near a
larger dispersed cluster.
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Finishing CURE

Now, visit each point p in the data set.
Place it in the “closest cluster.”

= Normal definition of “closest”: that cluster with the
closest (to p) among all the sample points of all the
clusters.
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