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¡  Given	a	set	of	points,	with	a	no1on	of	distance	
between	points,	group	the	points	into	some	
number	of	clusters,	so	that	members	of	a	
cluster	are	“close”	to	each	other,	while	
members	of	different	clusters	are	“far.”	
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¡  Clustering	in	two	dimensions	looks	easy.	
¡  Clustering	small	amounts	of	data	looks	easy.	
¡  And	in	most	cases,	looks	are	not	deceiving.	
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¡ Many	applica1ons	involve	not	2,	but	10	or	
10,000	dimensions.	

¡  High-dimensional	spaces	look	different:	almost	
all	pairs	of	points	are	at	about	the	same	
distance.	
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¡  Assume	random	points	between	0	and	1	in	each	
dimension.	

¡  In	2	dimensions:	a	variety	of	distances	between	
0	and	1.41.	

¡  In	any	number	of	dimensions,	the	distance	
between	two	random	points	in	any	one	
dimension	is	distributed	as	a	triangle.	

Any	point	is	distance	
zero	from	itself.	

Half	the	points	are	the	first	
of	points	at	distance	½.	

Only	points	0	and	
1	are	distance	1.	
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¡  The	law	of	large	numbers	applies.	
¡  Actual	distance	between	two	random	points	is	
the	sqrt	of	the	sum	of	squares	of	essen1ally	the	
same	set	of	differences.	
§  I.e.,	“all	points	are	the	same	distance	apart.”	



¡  Euclidean	spaces	have	dimensions,	and	points	
have	coordinates	in	each	dimension.	

¡  Distance	between	points	is	usually	the	square-
root	of	the	sum	of	the	squares	of	the	distances	
in	each	dimension.	

¡  Non-Euclidean	spaces	have	a	distance	measure,	
but	points	do	not	really	have	a	posi1on	in	the	
space.	
§  Big	problem:	cannot	“average”	points.	
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¡  Objects	are	sequences	of	{C,A,T,G}.	
¡  Distance	between	sequences	=	edit	distance	=	
the	minimum	number	of	inserts	and	deletes	
needed	to	turn	one	into	the	other.	
§ No1ce:	no	way	to	“average”	two	strings.	

¡  In	prac1ce,	the	distance	for	DNA	sequences	is	
more	complicated:	allows	other	opera1ons	like	
muta/ons	(change	of	a	symbol	into	another)	or	
reversal	of	substrings.	
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¡  Hierarchical	(Agglomera1ve):	
§  Ini1ally,	each	point	in	cluster	by	itself.	
§  Repeatedly	combine	the	two	“nearest”	clusters	into	
one.	

¡  Point	Assignment:	
§ Maintain	a	set	of	clusters.	
§  Place	points	into	their	“nearest”	cluster.	
§  Possibly	split	clusters	or	combine	clusters	as	we	go.	



¡  Point	assignment	
good	when	clusters	
are	nice,	convex	
shapes.	

¡  Hierarchical	can	win	
when	shapes	are	
weird.	
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Aside:	if	you	realized	you	had	concentric	
clusters,	you	could	map	points	based	on	
distance	from	center,	and	turn	the	problem	
into	a	simple,	one-dimensional	case.	
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¡  Two	important	ques1ons:	
1.  How	do	you	determine	the	“nearness”	of	clusters?	
2.  How	do	you	represent	a	cluster	of	more	than	one	

point?	
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¡  Key	problem:	as	you	build	clusters,	how	do	you	
represent	the	loca1on	of	each	cluster,	to	tell	
which	pair	of	clusters	is	closest?	

¡  Euclidean	case:	each	cluster	has	a	centroid	=	
average	of	its	points.	
§ Measure	intercluster	distances	by	distances	of	
centroids.	
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¡  The	only	“loca1ons”	we	can	talk	about	are	the	
points	themselves.	
§  I.e.,	there	is	no	“average”	of	two	points.	

¡  Approach	1:	clustroid		=	point	“closest”	to	other	
points.	
§  Treat	clustroid	as	if	it	were	centroid,	when	
compu1ng	intercluster	distances.		
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¡  Possible	meanings:	
1.  Smallest	maximum	distance	to	the	other	points.	
2.  Smallest	average	distance	to	other	points.	
3.  Smallest	sum	of	squares	of	distances	to	other	

points.	
4.  Etc.,	etc.	
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¡  Approach	2:	intercluster	distance	=	minimum	
of	the	distances	between	any	two	points,	one	
from	each	cluster.	

¡  Approach	3:	Pick	a	no1on	of	“cohesion”	of	
clusters,	e.g.,	maximum	distance	from	the	
centroid	or	clustroid.	
§ Merge	clusters	whose	union	is	most	cohesive.	
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¡  Approach	1:	Use	the	diameter	of	the	merged	
cluster	=	maximum	distance	between	points	in	
the	cluster.	

¡  Approach	2:	Use	the	average	distance	
between	points	in	the	cluster.	

¡  Approach	3:	Density-based	approach:	take	the	
diameter	or	average	distance,	e.g.,	and	divide	
by	the	number	of	points	in	the	cluster.	
§  Perhaps	raise	the	number	of	points	to	a	power	first,	
e.g.,	square-root.	



¡  It	really	depends	on	the	shape	of	clusters.	
§ Which	you	may	not	know	in	advance.	

¡  Example:	we’ll	compare	two	approaches:	
1.  Merge	clusters	with	smallest	distance	between	

centroids	(or	clustroids	for	non-Euclidean).	
2.  Merge	clusters	with	the	smallest	distance	between	

two	points,	one	from	each	cluster.	
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¡  Centroid-based	
merging	works	well.	

¡  But	merger	based	on	
closest	members	
might	accidentally	
merge	incorrectly.	
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A	and	B	have	closer	centroids	
than	A	and	C,	but	closest	points	
are	from	A	and	C.	

A	

B	

C	



¡  Linking	based	on	
closest	members	
works	well.	

¡  But	Centroid-based	
linking	might	cause	
errors.	
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¡  An	example	of	point-assignment.	
¡  Assumes	Euclidean	space.	
¡  Start	by	picking	k,	the	number	of	clusters.	
¡  Ini1alize	clusters	with	a	seed	(=	one	point	per	
cluster).	
§  Example:	pick	one	point	at	random,	then		k-1	other	
points,	each	as	far	away	as	possible	from	the	
previous	points.	
§ OK,	as	long	as	there	are	no	outliers	(points	that	are	far	from	
any	reasonable	cluster).	



¡  Basic	idea:	pick	a	small	sample	of	points,	cluster	
them	by	any	algorithm,	and	use	the	centroids	as	
a	seed.	

¡  In	k-means++,	sample	size	=	k	1mes	a	factor	
that	is	logarithmic	in	the	total	number	of	points.	

¡  Sequen1ally	pick	sample	points	randomly,	but	
the	probability	of	adding	a	point	p	to	the	
sample	is	propor1onal	to	D(p)2.	
§ D(p)	=	distance	between	p	and	the	nearest	picked	
point.	
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¡  k-means++,	like	other	seed	methods,	is	
sequen1al.	
§  You	need	to	update	D(p)	for	each	unpicked	p	due	to	
new	point.	

¡  Naturally	parallel:	many	compute	nodes	can	
each	handle	a	small	set	of	points.	
§  Each	picks	a	few	new	sample	points	using	same	D(p).	

¡  Really	important	and	common	trick:	don’t	
update	aker	every	selec1on;	rather	make	many	
selec1ons	at	one	round.	
§  Subop1mal	picks	don’t	really	mamer.	
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1.  For	each	point,	place	it	in	the	cluster	whose	
current	centroid	it	is	nearest.	

2.  Aker	all	points	are	assigned,	fix	the	centroids	
of	the	k	clusters.	

3.  Op1onal:	reassign	all	points	to	their	closest	
centroid.	
§  Some1mes	moves	points	between	clusters.	
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¡  Try	different	k,	looking	at	the	change	in	the	
average	distance	to	centroid,	as	k		increases.	

¡  Average	falls	rapidly	un1l	right	k,	then	changes	
limle.	

k	

Average	
distance	to	
centroid	 Best	value	

of	k	

Note:	binary	search	
for	k	is	possible.	
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¡  BFR	(Bradley-Fayyad-Reina)	is	a	variant	of	k-
means	designed	to	handle	very	large	(disk-
resident)	data	sets.	

¡  It	assumes	that	clusters	are	normally	
distributed	around	a	centroid	in	a	Euclidean	
space.	
§  Standard	devia1ons	in	different	dimensions	may	
vary.	
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¡  Points	are	read	one	main-memory-full	at	a	
1me.	

¡ Most	points	from	previous	memory	loads	are	
summarized	by	simple	sta1s1cs.	
§  Also	kept	in	main	memory,	which	limits	how	many	
points	can	be	read	in	one	“memory	load.”	

¡  To	begin,	from	the	ini1al	load	we	select	the	
ini1al	k	centroids	by	some	sensible	approach.	
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1.  The	discard	set	(DS):	points	close	enough	to	a	
centroid	to	be	summarized.	

2.  The	compression	set	(CS):	groups	of	points	that	
are	close	together	but	not	close	to	any	
centroid.		They	are	summarized,	but	not	
assigned	to	a	cluster.	

3.  The	retained	set	(RS):	isolated	points.	
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A	cluster.		Its	points	
are	in	DS.	

The	centroid	

Compression	sets.	
Their	points	are	in	CS.	

Points	in	RS	



37	

¡  Each	cluster	in	the	discard	set	and	each	
compression	set	is	summarized	by:	
1.  The	number	of	points,	N.	
2.  The	vector	SUM,	whose	i	th	component	is	the	sum	

of	the	coordinates	of	the	points	in	the	i	th	
dimension.	

3.  The	vector	SUMSQ:	i	th	component	=	sum	of	
squares	of	coordinates	in	i	th	dimension.	
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¡  2d	+	1	values	represent	any	number	of	points.	
§  d		=	number	of	dimensions.	

¡  Averages	in	each	dimension	(centroid	
coordinates)	can	be	calculated	easily	as	SUMi/
N.	
§  SUMi	=	i	th	component	of	SUM.	

¡  Variance	in	dimension	i	can	be	computed	by:	
(SUMSQi	/N	)	–	(SUMi	/N	)2	

§  And	the	standard	devia1on	is	the	square	root	of	
that.	
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1.  Find	those	points	that	are	“sufficiently	close”	
to	a	cluster	centroid;	add	those	points	to	that	
cluster	and	the	DS.	

2.  Use	any	main-memory	clustering	algorithm	to	
cluster	the	remaining	points	and	the	old	RS.	

§  Clusters	go	to	the	CS;	outlying	points	to	the	RS.	
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3.  Adjust	sta1s1cs	of	the	clusters	to	account	for	
the	new	points.	

§  Consider	merging	compressed	sets	in	the	CS.	
4.  If	this	is	the	last	round,	merge	all	compressed	

sets	in	the	CS	and	all	RS	points	into	their	
nearest	cluster.	
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¡  How	do	we	decide	if	a	point	is	“close	enough”	
to	a	cluster	that	we	will	add	the	point	to	that	
cluster?	

¡  How	do	we	decide	whether	two	compressed	
sets	deserve	to	be	combined	into	one?	
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¡  We	need	a	way	to	decide	whether	to	put	a	
new	point	into	a	cluster.	

¡  BFR	suggest	two	ways:	
1.  The	Mahalanobis	distance	is	less	than	a	threshold.	
2.  Low	likelihood	of	the	currently	nearest	centroid	

changing.	
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¡  Normalized	Euclidean	distance	from	centroid.	
¡  For	point	(x1,…,	xk)	and	centroid	(c1,…,	ck):	

1.  Normalize	in	each	dimension:	yi	=	(xi	-ci)/σi		
§  σi	=	standard	devia1on	in	i	th	dimension	for	this	cluster.	

2.  Take	sum	of	the	squares	of	the	yi	’s.	
3.  Take	the	square	root.	
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¡  If	clusters	are	normally	distributed	in	d		
dimensions,	then	aker	transforma1on,	one	
standard	devia1on	=	√d.	
§  I.e.,	70%	of	the	points	of	the	cluster	will	have	a	
Mahalanobis	distance	<	√d.	

¡  Accept	a	point	for	a	cluster	if	its	M.D.	is	<	some	
threshold,	e.g.	4	standard	devia1ons.	
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¡  Similar	to	measuring	cohesion.	For	example:	
¡  Compute	the	variance	of	the	combined	
subcluster,	in	each	dimension.	
§ N,	SUM,	and	SUMSQ	allow	us	to	make	that	
calcula1on	quickly.	

¡  Combine	if	the	variance	is	below	some	
threshold.	

¡ Many	alterna1ves:	treat	dimensions	
differently,	consider	density.	
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¡  Problem	with	BFR/k-means:	
§  Assumes	clusters	are	normally	distributed	in	each	
dimension.	

§  And	axes	are	fixed	–	ellipses	at	an	angle	are	not	OK.	
¡  CURE:	
§  Assumes	a	Euclidean	distance.	
§  Allows	clusters	to	assume	any	shape.	
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1.  Pick	a	random	sample	of	points	that	fit	in	main	
memory.	

2.  Cluster	these	points	hierarchically	–	group	
nearest	points/clusters.	

3.  For	each	cluster,	pick	a	sample	of	points,	as	
dispersed	as	possible.	

4.  From	the	sample,	pick	representa1ves	by	
moving	them	(say)	20%	toward	the	centroid	of	
the	cluster.	



50	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	



51	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	

Pick	(say)	4	
remote	points	
for	each	
cluster.	



52	

e	 e	

e	

e	

e	 e	

e	

e	 e	

e	

e	

h	

h	

h	

h	

h	

h	

h	 h	

h	

h	

h	

h	 h	

salary	

age	

Move	points	
(say)	20%	
toward	the	
centroid.	



¡  A	large,	dispersed	cluster	will	have	large	moves	
from	its	boundary.	

¡  A	small,	dense	cluster	will	have	limle	move.	
¡  Favors	a	small,	dense	cluster	that	is	near	a	
larger	dispersed	cluster.	
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¡  Now,	visit	each	point	p	in	the	data	set.	
¡  Place	it	in	the	“closest	cluster.”	
§ Normal	defini1on	of	“closest”:	that	cluster	with	the	
closest	(to	p)	among	all	the	sample	points	of	all	the	
clusters.	


