

WHAT ARE THE VOLUMES OF DATA
THAT WE ARE SEEING TODAY?

N han 2 billion videos were
waiched on YouTube... yesterday.

The averago teenager sends 4,762

ext mMessages por month

ol

wore performod
.

Everyday business
and consumer life
creates 2.5 quintillion
bytes of data per day.

2012 20Mm 2010

90% of the data in the
world today has been
created in the last two
years alone.

WHAT DOES THE FUTURE LOOK LIKE?

Worldwide IP traffic will
quadruple by 2015.

34355549

By 2015, nearly
3 billion people

feddiireiiiieee
Aidiaditttididil

))> A iiaiiiiiitiid
fitiddittieiniiee

phiddbetitiaetee
will be online, pushing the data

created and shared to nearly
8 zettabytes.

HOW IS THE MARKET FOR BIG DATA
SOLUTIONS EVOLVING?

RIS O o surveyed
businesses n North America
said big data will become a
econcern for them within the
next five years.

Challenges of Big Data

—Large amount of data
—Needs to be analyzed quickly

—Different types of structured and
unstructured data

—Low quality data, inconsistencies

This Course

* Develop algorithms to deal with such data
— Emphasis on different models for processing data
— Common techniques and fundamental paradigms

— Major applications where these techniques are
useful

» Style: Algorithmic/ Theoretical

— Background in basic algorithms (311) and
probability (240) strictly required.

Grading

* Homeworks (4-5) in a group of 4

— Will consist of mathematical problem/programming
assignments

— No late homework is allowed unless there are compelling
reasons and preapproved by the instructor.

— 20%
* Paper presentation

— Each group will give a half an hour presentation on a paper
selected by discussion with the instructor.

— 30%
 Final Exam

— One exam towards the end of the class
— 50%

Office Hours

Instructor: Thur 4-5pm at CS 322

Teaching Assistant: My Phan
27?77

All class related discussions should be done
through piazza.

Tentative Syllabus

* Models
— Developing FAST algorithms
— Developing SMALL SPACE algorithms
— Developing DISTRIBUTED algorithms
— Developing algorithms through CROWD SOURCING
* Applications
— Clustering
— Estimating Statistical Properties
— Algorithms over Massive Graphs and Social Networks
— Machine Learning

Books

e Text Book: We will use reference materials
from the following books. Both can be
downloaded for free.

* Mining of Massive Datasets, Jure Leskovec,
Anand Rajaraman and Jeff Ullman.

* Foundations of Data Science, a book in

preparation, by John Hopcroft and Ravi
Kannan

Models

» Different models need different algorithms for the same problem
— Default: Main Memory Model
— External Memory Model
— Streaming Model
— MapReduce 1. Do you have enough main memory ?

— Crowdsourcing 2. How much disk 1/0 are you performing ?

3. Is your data changing fast ?

4. Can you distribute your data to multiple
servers for fast processing ?

5. Is your data ambiguous that it needs
human power to process ?

Counting Distinct Elements

Given a sequence A=ay, @y, ..., @, where a; € {1...n}, compute
the number of distinct elements in A (denoted by [A]).

* Natural and popular statistics, eg.

— Given the list of transactions, compute the number of different
customers (i.e. credit card numbers)

— What is the size of the web vocabulary ?

Example: 455176124 44366
distinct elements=7

Counting Distinct Elements

Default model: Random Access Main Memory Model
Maintain an array of size n: B[1,...,n]—initially set to all “0”

f=n
|

If item “i” arrives set B[i]=1

Count the number of “1”’sin B

Counting Distinct Elements

Default model: Random Access Memory Model
Maintain an array of size n: B[1,...,n]—initially set to all “0”

=
|

If item “i” arrives set B[i]=1

Count the number of “1”sin B

» O(m) running time @)

» Requires random accesstoB(?)

» Requires space n even though the
number of distinct elements is small 83
or m < n —domain may be much larger

Counting Distinct Elements

Default model: Random Access Memory Model

Initialize count=0, an array of lists B[1....0(m)] and a hash function h
:{1...n} =2 {1...0(m)}
For each a,

— Compute j=h(a)

— Check if a; occurs in the list pointed to by B[j]

— If not, count=count+1 and add a; to the list

Return count

Assuming that h(.) is random enough, running time is O(m), space usage O(m).
PROVEIT !

Counting Distinct Elements

* External Memory Model
— M units of main memory
— Inputsizem, m >> M
— Data is stored on disk:

* Space divided into blocks, each of size B <=M

* Transferring one block of data into the main memory takes unit
time

— Main memory operations for free but disk |/O is costly

Distinct Elements in External Memory

* Sorting in external memory

» External Merge sort
— Split the data into M/B segments
— Recursively sort each segment
— Merge the segments using m/B block accesses

l | Example: M/B=3
\ \\\\\\\\ No of disk I/O/merging= m/B
T No of recursion call=logy,s m

I E— _ e —
Total sorting time=m/B log,,,s M

Distinct Elements in External Memory

« Sorting in external memory 455176124 44366

* External Merge sort ‘
— Split the data into M/B segments 11234 444556667
— Recursively sort each segment Count=1

— Merge the segments using m/B block accesses | For j=2,.,m
If 3, > a;, count=count+1

| ‘ Example: M/B=3

~—— No of disk I/O/merging= m/B

~—— No of recursion call=logy,s m
I E—
Total sorting time=m/B log,, s M

Distinct Elements in Streaming Model

* Streaming Model
— Data comes in streaming fashion one at a time
(suppose from CD-ROM or cash-register)
— M units of main memory, M <<m

— Only one pass over data
» Data not stored is lost

Distinct Elements in Streaming Model

Suppose you want to know if the number of distinct elements is at
least “t”

Initialize a hash function h:{1,...n} =2 {1,....t}
Initialize the answer to NO

For each a;:
— If h(a,) ==1, then set the answer to YES

The algorithm uses only 1 bit of storage ! (not counting the random bits for h)

Distinct Elements in Streaming Model

Suppose you want to know if the number of distinct elements is at least

upn
Initialize a hash function h:{1,..m} =2 {1,...,t}
Initialize the answer to NO, count=0
For each a;:

— If h(a;) ==1, then count++ (this run returns YES)

Repeat the above procedure for log n different hash functions from the
family
— SetYESif count> log n (1-1/e) [Boosting the confidence]

The algorithm uses log n bit of storage ! (not counting the random bits for h)
Run log(n) algorithms in parallel usingt=2,4,8,..n

Approximate answers with high probability > 1-1/n
Space usage O(log *n)

Distinct Elements in Streaming Model

Suppose you want to know if the number of distinct elements is at least
lltll
Initialize a hash function h:{1,..m} =2 {1,...,t}
Initialize the answer to NO, count=0
For each a;:
— If h(a;) ==1, then count++ (this run returns YES)

Repeat the above procedure for log n different hash functions from the
family
— SetYESif count> log n (1-1/e) [Boosting the confidence]

The algorithm uses log n bit of storage ! (not counting the random bits for h

Run log(n) algorithmsin parallel usingt=2,4,8,..n Approx.imation and ial |
Approximate answers with high probability > 1.1/ Randomization are essential !
Space usage O(log 2n)

MapReduce Model

* Hardware is relatively cheap
* Plenty of parallel algorithms designed but
— Parallel programming is hard

* Threaded programs are difficult to test, debug, synchronization
issues, more machines mean more breakdown

* MapReduce makes parallel programming easy

MapReduce Model

* MapReduce makes parallel programming easy

— Tracks the jobs and restarts if needed

— Takes care of data distribution and synchronization
* Butthere is no free lunch:

— Imposes a structure on the data
— Only allows for certain kind of parallelism

MapReduce Model

Data:
— Represented as <Key, Value> pairs
Map:
— Data =2 List < Key, Value> [programmer specified]
Shuffle:
— Aggregate all pairs with the same key [handled by system]
Reduce:
— <Key, List(Value)>=> <Key, List(Value)> [programmer specified]

Distinct Elements in MapReduce

r servers

Data

- [1,34], [2,3;],--, [N, 3]
Map

- [La [2.3,),--, [n,3,]20[1,3,], [1,3,),-[1,30] .[2.83mprss)s s [2,32mp)s-r (1,3)
Reduce

— Reducer 1: [1,3,], [1,3,],--[1,3,,;] 2 [1,3,], (1,3,],-[1,3n,]

— Reducer 2: [2,3,, 144). [2,31/n42)- (2,35, ,,]—) [2,3m/m1)s [2,30r42)0-[2,82m)

Map

[1,3,], [1,3,),--[1,30,] .[2.3 1) [2,35m) [N3LLIL 002 [1,3,], [1,3,],..[1,3,,,]
S, T o A R 11 M T 1) R At

Reduce

— Reducer 1: [1,3,], [1,3,],--[1,3y,] ,[1,h()], create sketch B,, outputs [1,B,]

Map.

- [1,8,],[2,8,],....[B,]~> [1,B,],[1,B,],....[1,B]

Reduce

— Reducerl: [1,8,], [1,B,],....,[1,B,], computes B= B,+B,+.....+B_, Follows the Streaming
Algorithm to compute distinct elements from the sketch

Crowdsourcing

* Incorporating human power for data gathering and computing
* People still outperform state-of-the-art algorithms for many data
intensive tasks

— Typically involve ambiguity, deep understanding of language or context
or subjective reasoning

Distinct Elements by Crowdsourcing

* Ask for each pair if they are equal

* Create a graph with each element as node

* Add an edge between two nodes if the corresponding pairs are
returned to be equal

* Return number of connected components

» Also known as record linkage, entity resolution, deduplication

Distinct Elements by Crowdsourcing

Distinct Elements by Crowdsourcing

Too many questions to crowd ! Costly.
Can we reduce the number of questions ?

